Step |
Hyp |
Ref |
Expression |
0 |
|
cline |
|- LineM |
1 |
|
vw |
|- w |
2 |
|
cvv |
|- _V |
3 |
|
vx |
|- x |
4 |
|
cbs |
|- Base |
5 |
1
|
cv |
|- w |
6 |
5 4
|
cfv |
|- ( Base ` w ) |
7 |
|
vy |
|- y |
8 |
3
|
cv |
|- x |
9 |
8
|
csn |
|- { x } |
10 |
6 9
|
cdif |
|- ( ( Base ` w ) \ { x } ) |
11 |
|
vp |
|- p |
12 |
|
vt |
|- t |
13 |
|
csca |
|- Scalar |
14 |
5 13
|
cfv |
|- ( Scalar ` w ) |
15 |
14 4
|
cfv |
|- ( Base ` ( Scalar ` w ) ) |
16 |
11
|
cv |
|- p |
17 |
|
cur |
|- 1r |
18 |
14 17
|
cfv |
|- ( 1r ` ( Scalar ` w ) ) |
19 |
|
csg |
|- -g |
20 |
14 19
|
cfv |
|- ( -g ` ( Scalar ` w ) ) |
21 |
12
|
cv |
|- t |
22 |
18 21 20
|
co |
|- ( ( 1r ` ( Scalar ` w ) ) ( -g ` ( Scalar ` w ) ) t ) |
23 |
|
cvsca |
|- .s |
24 |
5 23
|
cfv |
|- ( .s ` w ) |
25 |
22 8 24
|
co |
|- ( ( ( 1r ` ( Scalar ` w ) ) ( -g ` ( Scalar ` w ) ) t ) ( .s ` w ) x ) |
26 |
|
cplusg |
|- +g |
27 |
5 26
|
cfv |
|- ( +g ` w ) |
28 |
7
|
cv |
|- y |
29 |
21 28 24
|
co |
|- ( t ( .s ` w ) y ) |
30 |
25 29 27
|
co |
|- ( ( ( ( 1r ` ( Scalar ` w ) ) ( -g ` ( Scalar ` w ) ) t ) ( .s ` w ) x ) ( +g ` w ) ( t ( .s ` w ) y ) ) |
31 |
16 30
|
wceq |
|- p = ( ( ( ( 1r ` ( Scalar ` w ) ) ( -g ` ( Scalar ` w ) ) t ) ( .s ` w ) x ) ( +g ` w ) ( t ( .s ` w ) y ) ) |
32 |
31 12 15
|
wrex |
|- E. t e. ( Base ` ( Scalar ` w ) ) p = ( ( ( ( 1r ` ( Scalar ` w ) ) ( -g ` ( Scalar ` w ) ) t ) ( .s ` w ) x ) ( +g ` w ) ( t ( .s ` w ) y ) ) |
33 |
32 11 6
|
crab |
|- { p e. ( Base ` w ) | E. t e. ( Base ` ( Scalar ` w ) ) p = ( ( ( ( 1r ` ( Scalar ` w ) ) ( -g ` ( Scalar ` w ) ) t ) ( .s ` w ) x ) ( +g ` w ) ( t ( .s ` w ) y ) ) } |
34 |
3 7 6 10 33
|
cmpo |
|- ( x e. ( Base ` w ) , y e. ( ( Base ` w ) \ { x } ) |-> { p e. ( Base ` w ) | E. t e. ( Base ` ( Scalar ` w ) ) p = ( ( ( ( 1r ` ( Scalar ` w ) ) ( -g ` ( Scalar ` w ) ) t ) ( .s ` w ) x ) ( +g ` w ) ( t ( .s ` w ) y ) ) } ) |
35 |
1 2 34
|
cmpt |
|- ( w e. _V |-> ( x e. ( Base ` w ) , y e. ( ( Base ` w ) \ { x } ) |-> { p e. ( Base ` w ) | E. t e. ( Base ` ( Scalar ` w ) ) p = ( ( ( ( 1r ` ( Scalar ` w ) ) ( -g ` ( Scalar ` w ) ) t ) ( .s ` w ) x ) ( +g ` w ) ( t ( .s ` w ) y ) ) } ) ) |
36 |
0 35
|
wceq |
|- LineM = ( w e. _V |-> ( x e. ( Base ` w ) , y e. ( ( Base ` w ) \ { x } ) |-> { p e. ( Base ` w ) | E. t e. ( Base ` ( Scalar ` w ) ) p = ( ( ( ( 1r ` ( Scalar ` w ) ) ( -g ` ( Scalar ` w ) ) t ) ( .s ` w ) x ) ( +g ` w ) ( t ( .s ` w ) y ) ) } ) ) |