Metamath Proof Explorer


Definition df-spr

Description: Define the function which maps a set v to the set of pairs consisting of elements of the set v . (Contributed by AV, 21-Nov-2021)

Ref Expression
Assertion df-spr
|- Pairs = ( v e. _V |-> { p | E. a e. v E. b e. v p = { a , b } } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cspr
 |-  Pairs
1 vv
 |-  v
2 cvv
 |-  _V
3 vp
 |-  p
4 va
 |-  a
5 1 cv
 |-  v
6 vb
 |-  b
7 3 cv
 |-  p
8 4 cv
 |-  a
9 6 cv
 |-  b
10 8 9 cpr
 |-  { a , b }
11 7 10 wceq
 |-  p = { a , b }
12 11 6 5 wrex
 |-  E. b e. v p = { a , b }
13 12 4 5 wrex
 |-  E. a e. v E. b e. v p = { a , b }
14 13 3 cab
 |-  { p | E. a e. v E. b e. v p = { a , b } }
15 1 2 14 cmpt
 |-  ( v e. _V |-> { p | E. a e. v E. b e. v p = { a , b } } )
16 0 15 wceq
 |-  Pairs = ( v e. _V |-> { p | E. a e. v E. b e. v p = { a , b } } )