Description: Define the function which maps a set v to the set of pairs consisting of elements of the set v . (Contributed by AV, 21-Nov-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-spr | ⊢ Pairs = ( 𝑣 ∈ V ↦ { 𝑝 ∣ ∃ 𝑎 ∈ 𝑣 ∃ 𝑏 ∈ 𝑣 𝑝 = { 𝑎 , 𝑏 } } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cspr | ⊢ Pairs | |
| 1 | vv | ⊢ 𝑣 | |
| 2 | cvv | ⊢ V | |
| 3 | vp | ⊢ 𝑝 | |
| 4 | va | ⊢ 𝑎 | |
| 5 | 1 | cv | ⊢ 𝑣 |
| 6 | vb | ⊢ 𝑏 | |
| 7 | 3 | cv | ⊢ 𝑝 |
| 8 | 4 | cv | ⊢ 𝑎 |
| 9 | 6 | cv | ⊢ 𝑏 |
| 10 | 8 9 | cpr | ⊢ { 𝑎 , 𝑏 } |
| 11 | 7 10 | wceq | ⊢ 𝑝 = { 𝑎 , 𝑏 } |
| 12 | 11 6 5 | wrex | ⊢ ∃ 𝑏 ∈ 𝑣 𝑝 = { 𝑎 , 𝑏 } |
| 13 | 12 4 5 | wrex | ⊢ ∃ 𝑎 ∈ 𝑣 ∃ 𝑏 ∈ 𝑣 𝑝 = { 𝑎 , 𝑏 } |
| 14 | 13 3 | cab | ⊢ { 𝑝 ∣ ∃ 𝑎 ∈ 𝑣 ∃ 𝑏 ∈ 𝑣 𝑝 = { 𝑎 , 𝑏 } } |
| 15 | 1 2 14 | cmpt | ⊢ ( 𝑣 ∈ V ↦ { 𝑝 ∣ ∃ 𝑎 ∈ 𝑣 ∃ 𝑏 ∈ 𝑣 𝑝 = { 𝑎 , 𝑏 } } ) |
| 16 | 0 15 | wceq | ⊢ Pairs = ( 𝑣 ∈ V ↦ { 𝑝 ∣ ∃ 𝑎 ∈ 𝑣 ∃ 𝑏 ∈ 𝑣 𝑝 = { 𝑎 , 𝑏 } } ) |