Metamath Proof Explorer


Definition df-spr

Description: Define the function which maps a set v to the set of pairs consisting of elements of the set v . (Contributed by AV, 21-Nov-2021)

Ref Expression
Assertion df-spr Pairs = ( 𝑣 ∈ V ↦ { 𝑝 ∣ ∃ 𝑎𝑣𝑏𝑣 𝑝 = { 𝑎 , 𝑏 } } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cspr Pairs
1 vv 𝑣
2 cvv V
3 vp 𝑝
4 va 𝑎
5 1 cv 𝑣
6 vb 𝑏
7 3 cv 𝑝
8 4 cv 𝑎
9 6 cv 𝑏
10 8 9 cpr { 𝑎 , 𝑏 }
11 7 10 wceq 𝑝 = { 𝑎 , 𝑏 }
12 11 6 5 wrex 𝑏𝑣 𝑝 = { 𝑎 , 𝑏 }
13 12 4 5 wrex 𝑎𝑣𝑏𝑣 𝑝 = { 𝑎 , 𝑏 }
14 13 3 cab { 𝑝 ∣ ∃ 𝑎𝑣𝑏𝑣 𝑝 = { 𝑎 , 𝑏 } }
15 1 2 14 cmpt ( 𝑣 ∈ V ↦ { 𝑝 ∣ ∃ 𝑎𝑣𝑏𝑣 𝑝 = { 𝑎 , 𝑏 } } )
16 0 15 wceq Pairs = ( 𝑣 ∈ V ↦ { 𝑝 ∣ ∃ 𝑎𝑣𝑏𝑣 𝑝 = { 𝑎 , 𝑏 } } )