Metamath Proof Explorer


Theorem sprval

Description: The set of all unordered pairs over a given set V . (Contributed by AV, 21-Nov-2021)

Ref Expression
Assertion sprval ( 𝑉𝑊 → ( Pairs ‘ 𝑉 ) = { 𝑝 ∣ ∃ 𝑎𝑉𝑏𝑉 𝑝 = { 𝑎 , 𝑏 } } )

Proof

Step Hyp Ref Expression
1 df-spr Pairs = ( 𝑣 ∈ V ↦ { 𝑝 ∣ ∃ 𝑎𝑣𝑏𝑣 𝑝 = { 𝑎 , 𝑏 } } )
2 1 a1i ( 𝑉𝑊 → Pairs = ( 𝑣 ∈ V ↦ { 𝑝 ∣ ∃ 𝑎𝑣𝑏𝑣 𝑝 = { 𝑎 , 𝑏 } } ) )
3 id ( 𝑣 = 𝑉𝑣 = 𝑉 )
4 rexeq ( 𝑣 = 𝑉 → ( ∃ 𝑏𝑣 𝑝 = { 𝑎 , 𝑏 } ↔ ∃ 𝑏𝑉 𝑝 = { 𝑎 , 𝑏 } ) )
5 3 4 rexeqbidv ( 𝑣 = 𝑉 → ( ∃ 𝑎𝑣𝑏𝑣 𝑝 = { 𝑎 , 𝑏 } ↔ ∃ 𝑎𝑉𝑏𝑉 𝑝 = { 𝑎 , 𝑏 } ) )
6 5 adantl ( ( 𝑉𝑊𝑣 = 𝑉 ) → ( ∃ 𝑎𝑣𝑏𝑣 𝑝 = { 𝑎 , 𝑏 } ↔ ∃ 𝑎𝑉𝑏𝑉 𝑝 = { 𝑎 , 𝑏 } ) )
7 6 abbidv ( ( 𝑉𝑊𝑣 = 𝑉 ) → { 𝑝 ∣ ∃ 𝑎𝑣𝑏𝑣 𝑝 = { 𝑎 , 𝑏 } } = { 𝑝 ∣ ∃ 𝑎𝑉𝑏𝑉 𝑝 = { 𝑎 , 𝑏 } } )
8 elex ( 𝑉𝑊𝑉 ∈ V )
9 zfpair2 { 𝑎 , 𝑏 } ∈ V
10 eueq ( { 𝑎 , 𝑏 } ∈ V ↔ ∃! 𝑝 𝑝 = { 𝑎 , 𝑏 } )
11 9 10 mpbi ∃! 𝑝 𝑝 = { 𝑎 , 𝑏 }
12 euabex ( ∃! 𝑝 𝑝 = { 𝑎 , 𝑏 } → { 𝑝𝑝 = { 𝑎 , 𝑏 } } ∈ V )
13 11 12 mp1i ( 𝑉𝑊 → { 𝑝𝑝 = { 𝑎 , 𝑏 } } ∈ V )
14 13 ralrimivw ( 𝑉𝑊 → ∀ 𝑏𝑉 { 𝑝𝑝 = { 𝑎 , 𝑏 } } ∈ V )
15 abrexex2g ( ( 𝑉𝑊 ∧ ∀ 𝑏𝑉 { 𝑝𝑝 = { 𝑎 , 𝑏 } } ∈ V ) → { 𝑝 ∣ ∃ 𝑏𝑉 𝑝 = { 𝑎 , 𝑏 } } ∈ V )
16 14 15 mpdan ( 𝑉𝑊 → { 𝑝 ∣ ∃ 𝑏𝑉 𝑝 = { 𝑎 , 𝑏 } } ∈ V )
17 16 ralrimivw ( 𝑉𝑊 → ∀ 𝑎𝑉 { 𝑝 ∣ ∃ 𝑏𝑉 𝑝 = { 𝑎 , 𝑏 } } ∈ V )
18 abrexex2g ( ( 𝑉𝑊 ∧ ∀ 𝑎𝑉 { 𝑝 ∣ ∃ 𝑏𝑉 𝑝 = { 𝑎 , 𝑏 } } ∈ V ) → { 𝑝 ∣ ∃ 𝑎𝑉𝑏𝑉 𝑝 = { 𝑎 , 𝑏 } } ∈ V )
19 17 18 mpdan ( 𝑉𝑊 → { 𝑝 ∣ ∃ 𝑎𝑉𝑏𝑉 𝑝 = { 𝑎 , 𝑏 } } ∈ V )
20 2 7 8 19 fvmptd ( 𝑉𝑊 → ( Pairs ‘ 𝑉 ) = { 𝑝 ∣ ∃ 𝑎𝑉𝑏𝑉 𝑝 = { 𝑎 , 𝑏 } } )