Metamath Proof Explorer


Definition df-spr

Description: Define the function which maps a set v to the set of pairs consisting of elements of the set v . (Contributed by AV, 21-Nov-2021)

Ref Expression
Assertion df-spr Pairs = v V p | a v b v p = a b

Detailed syntax breakdown

Step Hyp Ref Expression
0 cspr class Pairs
1 vv setvar v
2 cvv class V
3 vp setvar p
4 va setvar a
5 1 cv setvar v
6 vb setvar b
7 3 cv setvar p
8 4 cv setvar a
9 6 cv setvar b
10 8 9 cpr class a b
11 7 10 wceq wff p = a b
12 11 6 5 wrex wff b v p = a b
13 12 4 5 wrex wff a v b v p = a b
14 13 3 cab class p | a v b v p = a b
15 1 2 14 cmpt class v V p | a v b v p = a b
16 0 15 wceq wff Pairs = v V p | a v b v p = a b