Metamath Proof Explorer


Definition df-spr

Description: Define the function which maps a set v to the set of pairs consisting of elements of the set v . (Contributed by AV, 21-Nov-2021)

Ref Expression
Assertion df-spr Pairs=vVp|avbvp=ab

Detailed syntax breakdown

Step Hyp Ref Expression
0 cspr classPairs
1 vv setvarv
2 cvv classV
3 vp setvarp
4 va setvara
5 1 cv setvarv
6 vb setvarb
7 3 cv setvarp
8 4 cv setvara
9 6 cv setvarb
10 8 9 cpr classab
11 7 10 wceq wffp=ab
12 11 6 5 wrex wffbvp=ab
13 12 4 5 wrex wffavbvp=ab
14 13 3 cab classp|avbvp=ab
15 1 2 14 cmpt classvVp|avbvp=ab
16 0 15 wceq wffPairs=vVp|avbvp=ab