| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cthinc |
|- ThinCat |
| 1 |
|
vc |
|- c |
| 2 |
|
ccat |
|- Cat |
| 3 |
|
cbs |
|- Base |
| 4 |
1
|
cv |
|- c |
| 5 |
4 3
|
cfv |
|- ( Base ` c ) |
| 6 |
|
vb |
|- b |
| 7 |
|
chom |
|- Hom |
| 8 |
4 7
|
cfv |
|- ( Hom ` c ) |
| 9 |
|
vh |
|- h |
| 10 |
|
vx |
|- x |
| 11 |
6
|
cv |
|- b |
| 12 |
|
vy |
|- y |
| 13 |
|
vf |
|- f |
| 14 |
13
|
cv |
|- f |
| 15 |
10
|
cv |
|- x |
| 16 |
9
|
cv |
|- h |
| 17 |
12
|
cv |
|- y |
| 18 |
15 17 16
|
co |
|- ( x h y ) |
| 19 |
14 18
|
wcel |
|- f e. ( x h y ) |
| 20 |
19 13
|
wmo |
|- E* f f e. ( x h y ) |
| 21 |
20 12 11
|
wral |
|- A. y e. b E* f f e. ( x h y ) |
| 22 |
21 10 11
|
wral |
|- A. x e. b A. y e. b E* f f e. ( x h y ) |
| 23 |
22 9 8
|
wsbc |
|- [. ( Hom ` c ) / h ]. A. x e. b A. y e. b E* f f e. ( x h y ) |
| 24 |
23 6 5
|
wsbc |
|- [. ( Base ` c ) / b ]. [. ( Hom ` c ) / h ]. A. x e. b A. y e. b E* f f e. ( x h y ) |
| 25 |
24 1 2
|
crab |
|- { c e. Cat | [. ( Base ` c ) / b ]. [. ( Hom ` c ) / h ]. A. x e. b A. y e. b E* f f e. ( x h y ) } |
| 26 |
0 25
|
wceq |
|- ThinCat = { c e. Cat | [. ( Base ` c ) / b ]. [. ( Hom ` c ) / h ]. A. x e. b A. y e. b E* f f e. ( x h y ) } |