| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cthinc |
⊢ ThinCat |
| 1 |
|
vc |
⊢ 𝑐 |
| 2 |
|
ccat |
⊢ Cat |
| 3 |
|
cbs |
⊢ Base |
| 4 |
1
|
cv |
⊢ 𝑐 |
| 5 |
4 3
|
cfv |
⊢ ( Base ‘ 𝑐 ) |
| 6 |
|
vb |
⊢ 𝑏 |
| 7 |
|
chom |
⊢ Hom |
| 8 |
4 7
|
cfv |
⊢ ( Hom ‘ 𝑐 ) |
| 9 |
|
vh |
⊢ ℎ |
| 10 |
|
vx |
⊢ 𝑥 |
| 11 |
6
|
cv |
⊢ 𝑏 |
| 12 |
|
vy |
⊢ 𝑦 |
| 13 |
|
vf |
⊢ 𝑓 |
| 14 |
13
|
cv |
⊢ 𝑓 |
| 15 |
10
|
cv |
⊢ 𝑥 |
| 16 |
9
|
cv |
⊢ ℎ |
| 17 |
12
|
cv |
⊢ 𝑦 |
| 18 |
15 17 16
|
co |
⊢ ( 𝑥 ℎ 𝑦 ) |
| 19 |
14 18
|
wcel |
⊢ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) |
| 20 |
19 13
|
wmo |
⊢ ∃* 𝑓 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) |
| 21 |
20 12 11
|
wral |
⊢ ∀ 𝑦 ∈ 𝑏 ∃* 𝑓 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) |
| 22 |
21 10 11
|
wral |
⊢ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∃* 𝑓 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) |
| 23 |
22 9 8
|
wsbc |
⊢ [ ( Hom ‘ 𝑐 ) / ℎ ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∃* 𝑓 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) |
| 24 |
23 6 5
|
wsbc |
⊢ [ ( Base ‘ 𝑐 ) / 𝑏 ] [ ( Hom ‘ 𝑐 ) / ℎ ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∃* 𝑓 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) |
| 25 |
24 1 2
|
crab |
⊢ { 𝑐 ∈ Cat ∣ [ ( Base ‘ 𝑐 ) / 𝑏 ] [ ( Hom ‘ 𝑐 ) / ℎ ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∃* 𝑓 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) } |
| 26 |
0 25
|
wceq |
⊢ ThinCat = { 𝑐 ∈ Cat ∣ [ ( Base ‘ 𝑐 ) / 𝑏 ] [ ( Hom ‘ 𝑐 ) / ℎ ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∃* 𝑓 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) } |