Metamath Proof Explorer


Definition df-topn

Description: Define the topology extractor function. This differs from df-tset when a structure has been restricted using df-ress ; in this case the TopSet component will still have a topology over the larger set, and this function fixes this by restricting the topology as well. (Contributed by Mario Carneiro, 13-Aug-2015)

Ref Expression
Assertion df-topn
|- TopOpen = ( w e. _V |-> ( ( TopSet ` w ) |`t ( Base ` w ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 ctopn
 |-  TopOpen
1 vw
 |-  w
2 cvv
 |-  _V
3 cts
 |-  TopSet
4 1 cv
 |-  w
5 4 3 cfv
 |-  ( TopSet ` w )
6 crest
 |-  |`t
7 cbs
 |-  Base
8 4 7 cfv
 |-  ( Base ` w )
9 5 8 6 co
 |-  ( ( TopSet ` w ) |`t ( Base ` w ) )
10 1 2 9 cmpt
 |-  ( w e. _V |-> ( ( TopSet ` w ) |`t ( Base ` w ) ) )
11 0 10 wceq
 |-  TopOpen = ( w e. _V |-> ( ( TopSet ` w ) |`t ( Base ` w ) ) )