Description: Definition of a topology induced by a uniform structure. Definition 3 of BourbakiTop1 p. II.4. (Contributed by Thierry Arnoux, 17-Nov-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-utop | |- unifTop = ( u e. U. ran UnifOn |-> { a e. ~P dom U. u | A. x e. a E. v e. u ( v " { x } ) C_ a } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cutop | |- unifTop |
|
| 1 | vu | |- u |
|
| 2 | cust | |- UnifOn |
|
| 3 | 2 | crn | |- ran UnifOn |
| 4 | 3 | cuni | |- U. ran UnifOn |
| 5 | va | |- a |
|
| 6 | 1 | cv | |- u |
| 7 | 6 | cuni | |- U. u |
| 8 | 7 | cdm | |- dom U. u |
| 9 | 8 | cpw | |- ~P dom U. u |
| 10 | vx | |- x |
|
| 11 | 5 | cv | |- a |
| 12 | vv | |- v |
|
| 13 | 12 | cv | |- v |
| 14 | 10 | cv | |- x |
| 15 | 14 | csn | |- { x } |
| 16 | 13 15 | cima | |- ( v " { x } ) |
| 17 | 16 11 | wss | |- ( v " { x } ) C_ a |
| 18 | 17 12 6 | wrex | |- E. v e. u ( v " { x } ) C_ a |
| 19 | 18 10 11 | wral | |- A. x e. a E. v e. u ( v " { x } ) C_ a |
| 20 | 19 5 9 | crab | |- { a e. ~P dom U. u | A. x e. a E. v e. u ( v " { x } ) C_ a } |
| 21 | 1 4 20 | cmpt | |- ( u e. U. ran UnifOn |-> { a e. ~P dom U. u | A. x e. a E. v e. u ( v " { x } ) C_ a } ) |
| 22 | 0 21 | wceq | |- unifTop = ( u e. U. ran UnifOn |-> { a e. ~P dom U. u | A. x e. a E. v e. u ( v " { x } ) C_ a } ) |