| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cvdwa |  |-  AP | 
						
							| 1 |  | vk |  |-  k | 
						
							| 2 |  | cn0 |  |-  NN0 | 
						
							| 3 |  | va |  |-  a | 
						
							| 4 |  | cn |  |-  NN | 
						
							| 5 |  | vd |  |-  d | 
						
							| 6 |  | vm |  |-  m | 
						
							| 7 |  | cc0 |  |-  0 | 
						
							| 8 |  | cfz |  |-  ... | 
						
							| 9 | 1 | cv |  |-  k | 
						
							| 10 |  | cmin |  |-  - | 
						
							| 11 |  | c1 |  |-  1 | 
						
							| 12 | 9 11 10 | co |  |-  ( k - 1 ) | 
						
							| 13 | 7 12 8 | co |  |-  ( 0 ... ( k - 1 ) ) | 
						
							| 14 | 3 | cv |  |-  a | 
						
							| 15 |  | caddc |  |-  + | 
						
							| 16 | 6 | cv |  |-  m | 
						
							| 17 |  | cmul |  |-  x. | 
						
							| 18 | 5 | cv |  |-  d | 
						
							| 19 | 16 18 17 | co |  |-  ( m x. d ) | 
						
							| 20 | 14 19 15 | co |  |-  ( a + ( m x. d ) ) | 
						
							| 21 | 6 13 20 | cmpt |  |-  ( m e. ( 0 ... ( k - 1 ) ) |-> ( a + ( m x. d ) ) ) | 
						
							| 22 | 21 | crn |  |-  ran ( m e. ( 0 ... ( k - 1 ) ) |-> ( a + ( m x. d ) ) ) | 
						
							| 23 | 3 5 4 4 22 | cmpo |  |-  ( a e. NN , d e. NN |-> ran ( m e. ( 0 ... ( k - 1 ) ) |-> ( a + ( m x. d ) ) ) ) | 
						
							| 24 | 1 2 23 | cmpt |  |-  ( k e. NN0 |-> ( a e. NN , d e. NN |-> ran ( m e. ( 0 ... ( k - 1 ) ) |-> ( a + ( m x. d ) ) ) ) ) | 
						
							| 25 | 0 24 | wceq |  |-  AP = ( k e. NN0 |-> ( a e. NN , d e. NN |-> ran ( m e. ( 0 ... ( k - 1 ) ) |-> ( a + ( m x. d ) ) ) ) ) |