Step |
Hyp |
Ref |
Expression |
0 |
|
cvdwa |
|- AP |
1 |
|
vk |
|- k |
2 |
|
cn0 |
|- NN0 |
3 |
|
va |
|- a |
4 |
|
cn |
|- NN |
5 |
|
vd |
|- d |
6 |
|
vm |
|- m |
7 |
|
cc0 |
|- 0 |
8 |
|
cfz |
|- ... |
9 |
1
|
cv |
|- k |
10 |
|
cmin |
|- - |
11 |
|
c1 |
|- 1 |
12 |
9 11 10
|
co |
|- ( k - 1 ) |
13 |
7 12 8
|
co |
|- ( 0 ... ( k - 1 ) ) |
14 |
3
|
cv |
|- a |
15 |
|
caddc |
|- + |
16 |
6
|
cv |
|- m |
17 |
|
cmul |
|- x. |
18 |
5
|
cv |
|- d |
19 |
16 18 17
|
co |
|- ( m x. d ) |
20 |
14 19 15
|
co |
|- ( a + ( m x. d ) ) |
21 |
6 13 20
|
cmpt |
|- ( m e. ( 0 ... ( k - 1 ) ) |-> ( a + ( m x. d ) ) ) |
22 |
21
|
crn |
|- ran ( m e. ( 0 ... ( k - 1 ) ) |-> ( a + ( m x. d ) ) ) |
23 |
3 5 4 4 22
|
cmpo |
|- ( a e. NN , d e. NN |-> ran ( m e. ( 0 ... ( k - 1 ) ) |-> ( a + ( m x. d ) ) ) ) |
24 |
1 2 23
|
cmpt |
|- ( k e. NN0 |-> ( a e. NN , d e. NN |-> ran ( m e. ( 0 ... ( k - 1 ) ) |-> ( a + ( m x. d ) ) ) ) ) |
25 |
0 24
|
wceq |
|- AP = ( k e. NN0 |-> ( a e. NN , d e. NN |-> ran ( m e. ( 0 ... ( k - 1 ) ) |-> ( a + ( m x. d ) ) ) ) ) |