| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cvdwa |
|- AP |
| 1 |
|
vk |
|- k |
| 2 |
|
cn0 |
|- NN0 |
| 3 |
|
va |
|- a |
| 4 |
|
cn |
|- NN |
| 5 |
|
vd |
|- d |
| 6 |
|
vm |
|- m |
| 7 |
|
cc0 |
|- 0 |
| 8 |
|
cfz |
|- ... |
| 9 |
1
|
cv |
|- k |
| 10 |
|
cmin |
|- - |
| 11 |
|
c1 |
|- 1 |
| 12 |
9 11 10
|
co |
|- ( k - 1 ) |
| 13 |
7 12 8
|
co |
|- ( 0 ... ( k - 1 ) ) |
| 14 |
3
|
cv |
|- a |
| 15 |
|
caddc |
|- + |
| 16 |
6
|
cv |
|- m |
| 17 |
|
cmul |
|- x. |
| 18 |
5
|
cv |
|- d |
| 19 |
16 18 17
|
co |
|- ( m x. d ) |
| 20 |
14 19 15
|
co |
|- ( a + ( m x. d ) ) |
| 21 |
6 13 20
|
cmpt |
|- ( m e. ( 0 ... ( k - 1 ) ) |-> ( a + ( m x. d ) ) ) |
| 22 |
21
|
crn |
|- ran ( m e. ( 0 ... ( k - 1 ) ) |-> ( a + ( m x. d ) ) ) |
| 23 |
3 5 4 4 22
|
cmpo |
|- ( a e. NN , d e. NN |-> ran ( m e. ( 0 ... ( k - 1 ) ) |-> ( a + ( m x. d ) ) ) ) |
| 24 |
1 2 23
|
cmpt |
|- ( k e. NN0 |-> ( a e. NN , d e. NN |-> ran ( m e. ( 0 ... ( k - 1 ) ) |-> ( a + ( m x. d ) ) ) ) ) |
| 25 |
0 24
|
wceq |
|- AP = ( k e. NN0 |-> ( a e. NN , d e. NN |-> ran ( m e. ( 0 ... ( k - 1 ) ) |-> ( a + ( m x. d ) ) ) ) ) |