Metamath Proof Explorer


Definition df-vdwap

Description: Define the arithmetic progression function, which takes as input a length k , a start point a , and a step d and outputs the set of points in this progression. (Contributed by Mario Carneiro, 18-Aug-2014)

Ref Expression
Assertion df-vdwap AP = ( 𝑘 ∈ ℕ0 ↦ ( 𝑎 ∈ ℕ , 𝑑 ∈ ℕ ↦ ran ( 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ↦ ( 𝑎 + ( 𝑚 · 𝑑 ) ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cvdwa AP
1 vk 𝑘
2 cn0 0
3 va 𝑎
4 cn
5 vd 𝑑
6 vm 𝑚
7 cc0 0
8 cfz ...
9 1 cv 𝑘
10 cmin
11 c1 1
12 9 11 10 co ( 𝑘 − 1 )
13 7 12 8 co ( 0 ... ( 𝑘 − 1 ) )
14 3 cv 𝑎
15 caddc +
16 6 cv 𝑚
17 cmul ·
18 5 cv 𝑑
19 16 18 17 co ( 𝑚 · 𝑑 )
20 14 19 15 co ( 𝑎 + ( 𝑚 · 𝑑 ) )
21 6 13 20 cmpt ( 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ↦ ( 𝑎 + ( 𝑚 · 𝑑 ) ) )
22 21 crn ran ( 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ↦ ( 𝑎 + ( 𝑚 · 𝑑 ) ) )
23 3 5 4 4 22 cmpo ( 𝑎 ∈ ℕ , 𝑑 ∈ ℕ ↦ ran ( 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ↦ ( 𝑎 + ( 𝑚 · 𝑑 ) ) ) )
24 1 2 23 cmpt ( 𝑘 ∈ ℕ0 ↦ ( 𝑎 ∈ ℕ , 𝑑 ∈ ℕ ↦ ran ( 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ↦ ( 𝑎 + ( 𝑚 · 𝑑 ) ) ) ) )
25 0 24 wceq AP = ( 𝑘 ∈ ℕ0 ↦ ( 𝑎 ∈ ℕ , 𝑑 ∈ ℕ ↦ ran ( 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ↦ ( 𝑎 + ( 𝑚 · 𝑑 ) ) ) ) )