| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cvdwa | ⊢ AP | 
						
							| 1 |  | vk | ⊢ 𝑘 | 
						
							| 2 |  | cn0 | ⊢ ℕ0 | 
						
							| 3 |  | va | ⊢ 𝑎 | 
						
							| 4 |  | cn | ⊢ ℕ | 
						
							| 5 |  | vd | ⊢ 𝑑 | 
						
							| 6 |  | vm | ⊢ 𝑚 | 
						
							| 7 |  | cc0 | ⊢ 0 | 
						
							| 8 |  | cfz | ⊢ ... | 
						
							| 9 | 1 | cv | ⊢ 𝑘 | 
						
							| 10 |  | cmin | ⊢  − | 
						
							| 11 |  | c1 | ⊢ 1 | 
						
							| 12 | 9 11 10 | co | ⊢ ( 𝑘  −  1 ) | 
						
							| 13 | 7 12 8 | co | ⊢ ( 0 ... ( 𝑘  −  1 ) ) | 
						
							| 14 | 3 | cv | ⊢ 𝑎 | 
						
							| 15 |  | caddc | ⊢  + | 
						
							| 16 | 6 | cv | ⊢ 𝑚 | 
						
							| 17 |  | cmul | ⊢  · | 
						
							| 18 | 5 | cv | ⊢ 𝑑 | 
						
							| 19 | 16 18 17 | co | ⊢ ( 𝑚  ·  𝑑 ) | 
						
							| 20 | 14 19 15 | co | ⊢ ( 𝑎  +  ( 𝑚  ·  𝑑 ) ) | 
						
							| 21 | 6 13 20 | cmpt | ⊢ ( 𝑚  ∈  ( 0 ... ( 𝑘  −  1 ) )  ↦  ( 𝑎  +  ( 𝑚  ·  𝑑 ) ) ) | 
						
							| 22 | 21 | crn | ⊢ ran  ( 𝑚  ∈  ( 0 ... ( 𝑘  −  1 ) )  ↦  ( 𝑎  +  ( 𝑚  ·  𝑑 ) ) ) | 
						
							| 23 | 3 5 4 4 22 | cmpo | ⊢ ( 𝑎  ∈  ℕ ,  𝑑  ∈  ℕ  ↦  ran  ( 𝑚  ∈  ( 0 ... ( 𝑘  −  1 ) )  ↦  ( 𝑎  +  ( 𝑚  ·  𝑑 ) ) ) ) | 
						
							| 24 | 1 2 23 | cmpt | ⊢ ( 𝑘  ∈  ℕ0  ↦  ( 𝑎  ∈  ℕ ,  𝑑  ∈  ℕ  ↦  ran  ( 𝑚  ∈  ( 0 ... ( 𝑘  −  1 ) )  ↦  ( 𝑎  +  ( 𝑚  ·  𝑑 ) ) ) ) ) | 
						
							| 25 | 0 24 | wceq | ⊢ AP  =  ( 𝑘  ∈  ℕ0  ↦  ( 𝑎  ∈  ℕ ,  𝑑  ∈  ℕ  ↦  ran  ( 𝑚  ∈  ( 0 ... ( 𝑘  −  1 ) )  ↦  ( 𝑎  +  ( 𝑚  ·  𝑑 ) ) ) ) ) |