Step |
Hyp |
Ref |
Expression |
0 |
|
cvdwa |
⊢ AP |
1 |
|
vk |
⊢ 𝑘 |
2 |
|
cn0 |
⊢ ℕ0 |
3 |
|
va |
⊢ 𝑎 |
4 |
|
cn |
⊢ ℕ |
5 |
|
vd |
⊢ 𝑑 |
6 |
|
vm |
⊢ 𝑚 |
7 |
|
cc0 |
⊢ 0 |
8 |
|
cfz |
⊢ ... |
9 |
1
|
cv |
⊢ 𝑘 |
10 |
|
cmin |
⊢ − |
11 |
|
c1 |
⊢ 1 |
12 |
9 11 10
|
co |
⊢ ( 𝑘 − 1 ) |
13 |
7 12 8
|
co |
⊢ ( 0 ... ( 𝑘 − 1 ) ) |
14 |
3
|
cv |
⊢ 𝑎 |
15 |
|
caddc |
⊢ + |
16 |
6
|
cv |
⊢ 𝑚 |
17 |
|
cmul |
⊢ · |
18 |
5
|
cv |
⊢ 𝑑 |
19 |
16 18 17
|
co |
⊢ ( 𝑚 · 𝑑 ) |
20 |
14 19 15
|
co |
⊢ ( 𝑎 + ( 𝑚 · 𝑑 ) ) |
21 |
6 13 20
|
cmpt |
⊢ ( 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ↦ ( 𝑎 + ( 𝑚 · 𝑑 ) ) ) |
22 |
21
|
crn |
⊢ ran ( 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ↦ ( 𝑎 + ( 𝑚 · 𝑑 ) ) ) |
23 |
3 5 4 4 22
|
cmpo |
⊢ ( 𝑎 ∈ ℕ , 𝑑 ∈ ℕ ↦ ran ( 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ↦ ( 𝑎 + ( 𝑚 · 𝑑 ) ) ) ) |
24 |
1 2 23
|
cmpt |
⊢ ( 𝑘 ∈ ℕ0 ↦ ( 𝑎 ∈ ℕ , 𝑑 ∈ ℕ ↦ ran ( 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ↦ ( 𝑎 + ( 𝑚 · 𝑑 ) ) ) ) ) |
25 |
0 24
|
wceq |
⊢ AP = ( 𝑘 ∈ ℕ0 ↦ ( 𝑎 ∈ ℕ , 𝑑 ∈ ℕ ↦ ran ( 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ↦ ( 𝑎 + ( 𝑚 · 𝑑 ) ) ) ) ) |