Metamath Proof Explorer


Definition df-vdwmc

Description: Define the "contains a monochromatic AP" predicate. (Contributed by Mario Carneiro, 18-Aug-2014)

Ref Expression
Assertion df-vdwmc MonoAP = { ⟨ 𝑘 , 𝑓 ⟩ ∣ ∃ 𝑐 ( ran ( AP ‘ 𝑘 ) ∩ 𝒫 ( 𝑓 “ { 𝑐 } ) ) ≠ ∅ }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cvdwm MonoAP
1 vk 𝑘
2 vf 𝑓
3 vc 𝑐
4 cvdwa AP
5 1 cv 𝑘
6 5 4 cfv ( AP ‘ 𝑘 )
7 6 crn ran ( AP ‘ 𝑘 )
8 2 cv 𝑓
9 8 ccnv 𝑓
10 3 cv 𝑐
11 10 csn { 𝑐 }
12 9 11 cima ( 𝑓 “ { 𝑐 } )
13 12 cpw 𝒫 ( 𝑓 “ { 𝑐 } )
14 7 13 cin ( ran ( AP ‘ 𝑘 ) ∩ 𝒫 ( 𝑓 “ { 𝑐 } ) )
15 c0
16 14 15 wne ( ran ( AP ‘ 𝑘 ) ∩ 𝒫 ( 𝑓 “ { 𝑐 } ) ) ≠ ∅
17 16 3 wex 𝑐 ( ran ( AP ‘ 𝑘 ) ∩ 𝒫 ( 𝑓 “ { 𝑐 } ) ) ≠ ∅
18 17 1 2 copab { ⟨ 𝑘 , 𝑓 ⟩ ∣ ∃ 𝑐 ( ran ( AP ‘ 𝑘 ) ∩ 𝒫 ( 𝑓 “ { 𝑐 } ) ) ≠ ∅ }
19 0 18 wceq MonoAP = { ⟨ 𝑘 , 𝑓 ⟩ ∣ ∃ 𝑐 ( ran ( AP ‘ 𝑘 ) ∩ 𝒫 ( 𝑓 “ { 𝑐 } ) ) ≠ ∅ }