| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cvdwm |
⊢ MonoAP |
| 1 |
|
vk |
⊢ 𝑘 |
| 2 |
|
vf |
⊢ 𝑓 |
| 3 |
|
vc |
⊢ 𝑐 |
| 4 |
|
cvdwa |
⊢ AP |
| 5 |
1
|
cv |
⊢ 𝑘 |
| 6 |
5 4
|
cfv |
⊢ ( AP ‘ 𝑘 ) |
| 7 |
6
|
crn |
⊢ ran ( AP ‘ 𝑘 ) |
| 8 |
2
|
cv |
⊢ 𝑓 |
| 9 |
8
|
ccnv |
⊢ ◡ 𝑓 |
| 10 |
3
|
cv |
⊢ 𝑐 |
| 11 |
10
|
csn |
⊢ { 𝑐 } |
| 12 |
9 11
|
cima |
⊢ ( ◡ 𝑓 “ { 𝑐 } ) |
| 13 |
12
|
cpw |
⊢ 𝒫 ( ◡ 𝑓 “ { 𝑐 } ) |
| 14 |
7 13
|
cin |
⊢ ( ran ( AP ‘ 𝑘 ) ∩ 𝒫 ( ◡ 𝑓 “ { 𝑐 } ) ) |
| 15 |
|
c0 |
⊢ ∅ |
| 16 |
14 15
|
wne |
⊢ ( ran ( AP ‘ 𝑘 ) ∩ 𝒫 ( ◡ 𝑓 “ { 𝑐 } ) ) ≠ ∅ |
| 17 |
16 3
|
wex |
⊢ ∃ 𝑐 ( ran ( AP ‘ 𝑘 ) ∩ 𝒫 ( ◡ 𝑓 “ { 𝑐 } ) ) ≠ ∅ |
| 18 |
17 1 2
|
copab |
⊢ { 〈 𝑘 , 𝑓 〉 ∣ ∃ 𝑐 ( ran ( AP ‘ 𝑘 ) ∩ 𝒫 ( ◡ 𝑓 “ { 𝑐 } ) ) ≠ ∅ } |
| 19 |
0 18
|
wceq |
⊢ MonoAP = { 〈 𝑘 , 𝑓 〉 ∣ ∃ 𝑐 ( ran ( AP ‘ 𝑘 ) ∩ 𝒫 ( ◡ 𝑓 “ { 𝑐 } ) ) ≠ ∅ } |