| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cvdwp |
⊢ PolyAP |
| 1 |
|
vm |
⊢ 𝑚 |
| 2 |
|
vk |
⊢ 𝑘 |
| 3 |
|
vf |
⊢ 𝑓 |
| 4 |
|
va |
⊢ 𝑎 |
| 5 |
|
cn |
⊢ ℕ |
| 6 |
|
vd |
⊢ 𝑑 |
| 7 |
|
cmap |
⊢ ↑m |
| 8 |
|
c1 |
⊢ 1 |
| 9 |
|
cfz |
⊢ ... |
| 10 |
1
|
cv |
⊢ 𝑚 |
| 11 |
8 10 9
|
co |
⊢ ( 1 ... 𝑚 ) |
| 12 |
5 11 7
|
co |
⊢ ( ℕ ↑m ( 1 ... 𝑚 ) ) |
| 13 |
|
vi |
⊢ 𝑖 |
| 14 |
4
|
cv |
⊢ 𝑎 |
| 15 |
|
caddc |
⊢ + |
| 16 |
6
|
cv |
⊢ 𝑑 |
| 17 |
13
|
cv |
⊢ 𝑖 |
| 18 |
17 16
|
cfv |
⊢ ( 𝑑 ‘ 𝑖 ) |
| 19 |
14 18 15
|
co |
⊢ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) |
| 20 |
|
cvdwa |
⊢ AP |
| 21 |
2
|
cv |
⊢ 𝑘 |
| 22 |
21 20
|
cfv |
⊢ ( AP ‘ 𝑘 ) |
| 23 |
19 18 22
|
co |
⊢ ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝑘 ) ( 𝑑 ‘ 𝑖 ) ) |
| 24 |
3
|
cv |
⊢ 𝑓 |
| 25 |
24
|
ccnv |
⊢ ◡ 𝑓 |
| 26 |
19 24
|
cfv |
⊢ ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) |
| 27 |
26
|
csn |
⊢ { ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } |
| 28 |
25 27
|
cima |
⊢ ( ◡ 𝑓 “ { ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) |
| 29 |
23 28
|
wss |
⊢ ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝑘 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝑓 “ { ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) |
| 30 |
29 13 11
|
wral |
⊢ ∀ 𝑖 ∈ ( 1 ... 𝑚 ) ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝑘 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝑓 “ { ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) |
| 31 |
|
chash |
⊢ ♯ |
| 32 |
13 11 26
|
cmpt |
⊢ ( 𝑖 ∈ ( 1 ... 𝑚 ) ↦ ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) |
| 33 |
32
|
crn |
⊢ ran ( 𝑖 ∈ ( 1 ... 𝑚 ) ↦ ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) |
| 34 |
33 31
|
cfv |
⊢ ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... 𝑚 ) ↦ ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) ) |
| 35 |
34 10
|
wceq |
⊢ ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... 𝑚 ) ↦ ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) ) = 𝑚 |
| 36 |
30 35
|
wa |
⊢ ( ∀ 𝑖 ∈ ( 1 ... 𝑚 ) ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝑘 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝑓 “ { ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ∧ ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... 𝑚 ) ↦ ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) ) = 𝑚 ) |
| 37 |
36 6 12
|
wrex |
⊢ ∃ 𝑑 ∈ ( ℕ ↑m ( 1 ... 𝑚 ) ) ( ∀ 𝑖 ∈ ( 1 ... 𝑚 ) ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝑘 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝑓 “ { ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ∧ ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... 𝑚 ) ↦ ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) ) = 𝑚 ) |
| 38 |
37 4 5
|
wrex |
⊢ ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ( ℕ ↑m ( 1 ... 𝑚 ) ) ( ∀ 𝑖 ∈ ( 1 ... 𝑚 ) ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝑘 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝑓 “ { ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ∧ ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... 𝑚 ) ↦ ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) ) = 𝑚 ) |
| 39 |
38 1 2 3
|
coprab |
⊢ { 〈 〈 𝑚 , 𝑘 〉 , 𝑓 〉 ∣ ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ( ℕ ↑m ( 1 ... 𝑚 ) ) ( ∀ 𝑖 ∈ ( 1 ... 𝑚 ) ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝑘 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝑓 “ { ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ∧ ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... 𝑚 ) ↦ ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) ) = 𝑚 ) } |
| 40 |
0 39
|
wceq |
⊢ PolyAP = { 〈 〈 𝑚 , 𝑘 〉 , 𝑓 〉 ∣ ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ( ℕ ↑m ( 1 ... 𝑚 ) ) ( ∀ 𝑖 ∈ ( 1 ... 𝑚 ) ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝑘 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝑓 “ { ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ∧ ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... 𝑚 ) ↦ ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) ) = 𝑚 ) } |