Metamath Proof Explorer


Definition df-vdwpc

Description: Define the "contains a polychromatic collection of APs" predicate. See vdwpc for more information. (Contributed by Mario Carneiro, 18-Aug-2014)

Ref Expression
Assertion df-vdwpc PolyAP = { ⟨ ⟨ 𝑚 , 𝑘 ⟩ , 𝑓 ⟩ ∣ ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ( ℕ ↑m ( 1 ... 𝑚 ) ) ( ∀ 𝑖 ∈ ( 1 ... 𝑚 ) ( ( 𝑎 + ( 𝑑𝑖 ) ) ( AP ‘ 𝑘 ) ( 𝑑𝑖 ) ) ⊆ ( 𝑓 “ { ( 𝑓 ‘ ( 𝑎 + ( 𝑑𝑖 ) ) ) } ) ∧ ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... 𝑚 ) ↦ ( 𝑓 ‘ ( 𝑎 + ( 𝑑𝑖 ) ) ) ) ) = 𝑚 ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cvdwp PolyAP
1 vm 𝑚
2 vk 𝑘
3 vf 𝑓
4 va 𝑎
5 cn
6 vd 𝑑
7 cmap m
8 c1 1
9 cfz ...
10 1 cv 𝑚
11 8 10 9 co ( 1 ... 𝑚 )
12 5 11 7 co ( ℕ ↑m ( 1 ... 𝑚 ) )
13 vi 𝑖
14 4 cv 𝑎
15 caddc +
16 6 cv 𝑑
17 13 cv 𝑖
18 17 16 cfv ( 𝑑𝑖 )
19 14 18 15 co ( 𝑎 + ( 𝑑𝑖 ) )
20 cvdwa AP
21 2 cv 𝑘
22 21 20 cfv ( AP ‘ 𝑘 )
23 19 18 22 co ( ( 𝑎 + ( 𝑑𝑖 ) ) ( AP ‘ 𝑘 ) ( 𝑑𝑖 ) )
24 3 cv 𝑓
25 24 ccnv 𝑓
26 19 24 cfv ( 𝑓 ‘ ( 𝑎 + ( 𝑑𝑖 ) ) )
27 26 csn { ( 𝑓 ‘ ( 𝑎 + ( 𝑑𝑖 ) ) ) }
28 25 27 cima ( 𝑓 “ { ( 𝑓 ‘ ( 𝑎 + ( 𝑑𝑖 ) ) ) } )
29 23 28 wss ( ( 𝑎 + ( 𝑑𝑖 ) ) ( AP ‘ 𝑘 ) ( 𝑑𝑖 ) ) ⊆ ( 𝑓 “ { ( 𝑓 ‘ ( 𝑎 + ( 𝑑𝑖 ) ) ) } )
30 29 13 11 wral 𝑖 ∈ ( 1 ... 𝑚 ) ( ( 𝑎 + ( 𝑑𝑖 ) ) ( AP ‘ 𝑘 ) ( 𝑑𝑖 ) ) ⊆ ( 𝑓 “ { ( 𝑓 ‘ ( 𝑎 + ( 𝑑𝑖 ) ) ) } )
31 chash
32 13 11 26 cmpt ( 𝑖 ∈ ( 1 ... 𝑚 ) ↦ ( 𝑓 ‘ ( 𝑎 + ( 𝑑𝑖 ) ) ) )
33 32 crn ran ( 𝑖 ∈ ( 1 ... 𝑚 ) ↦ ( 𝑓 ‘ ( 𝑎 + ( 𝑑𝑖 ) ) ) )
34 33 31 cfv ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... 𝑚 ) ↦ ( 𝑓 ‘ ( 𝑎 + ( 𝑑𝑖 ) ) ) ) )
35 34 10 wceq ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... 𝑚 ) ↦ ( 𝑓 ‘ ( 𝑎 + ( 𝑑𝑖 ) ) ) ) ) = 𝑚
36 30 35 wa ( ∀ 𝑖 ∈ ( 1 ... 𝑚 ) ( ( 𝑎 + ( 𝑑𝑖 ) ) ( AP ‘ 𝑘 ) ( 𝑑𝑖 ) ) ⊆ ( 𝑓 “ { ( 𝑓 ‘ ( 𝑎 + ( 𝑑𝑖 ) ) ) } ) ∧ ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... 𝑚 ) ↦ ( 𝑓 ‘ ( 𝑎 + ( 𝑑𝑖 ) ) ) ) ) = 𝑚 )
37 36 6 12 wrex 𝑑 ∈ ( ℕ ↑m ( 1 ... 𝑚 ) ) ( ∀ 𝑖 ∈ ( 1 ... 𝑚 ) ( ( 𝑎 + ( 𝑑𝑖 ) ) ( AP ‘ 𝑘 ) ( 𝑑𝑖 ) ) ⊆ ( 𝑓 “ { ( 𝑓 ‘ ( 𝑎 + ( 𝑑𝑖 ) ) ) } ) ∧ ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... 𝑚 ) ↦ ( 𝑓 ‘ ( 𝑎 + ( 𝑑𝑖 ) ) ) ) ) = 𝑚 )
38 37 4 5 wrex 𝑎 ∈ ℕ ∃ 𝑑 ∈ ( ℕ ↑m ( 1 ... 𝑚 ) ) ( ∀ 𝑖 ∈ ( 1 ... 𝑚 ) ( ( 𝑎 + ( 𝑑𝑖 ) ) ( AP ‘ 𝑘 ) ( 𝑑𝑖 ) ) ⊆ ( 𝑓 “ { ( 𝑓 ‘ ( 𝑎 + ( 𝑑𝑖 ) ) ) } ) ∧ ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... 𝑚 ) ↦ ( 𝑓 ‘ ( 𝑎 + ( 𝑑𝑖 ) ) ) ) ) = 𝑚 )
39 38 1 2 3 coprab { ⟨ ⟨ 𝑚 , 𝑘 ⟩ , 𝑓 ⟩ ∣ ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ( ℕ ↑m ( 1 ... 𝑚 ) ) ( ∀ 𝑖 ∈ ( 1 ... 𝑚 ) ( ( 𝑎 + ( 𝑑𝑖 ) ) ( AP ‘ 𝑘 ) ( 𝑑𝑖 ) ) ⊆ ( 𝑓 “ { ( 𝑓 ‘ ( 𝑎 + ( 𝑑𝑖 ) ) ) } ) ∧ ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... 𝑚 ) ↦ ( 𝑓 ‘ ( 𝑎 + ( 𝑑𝑖 ) ) ) ) ) = 𝑚 ) }
40 0 39 wceq PolyAP = { ⟨ ⟨ 𝑚 , 𝑘 ⟩ , 𝑓 ⟩ ∣ ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ( ℕ ↑m ( 1 ... 𝑚 ) ) ( ∀ 𝑖 ∈ ( 1 ... 𝑚 ) ( ( 𝑎 + ( 𝑑𝑖 ) ) ( AP ‘ 𝑘 ) ( 𝑑𝑖 ) ) ⊆ ( 𝑓 “ { ( 𝑓 ‘ ( 𝑎 + ( 𝑑𝑖 ) ) ) } ) ∧ ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... 𝑚 ) ↦ ( 𝑓 ‘ ( 𝑎 + ( 𝑑𝑖 ) ) ) ) ) = 𝑚 ) }