Step |
Hyp |
Ref |
Expression |
0 |
|
cvdwp |
⊢ PolyAP |
1 |
|
vm |
⊢ 𝑚 |
2 |
|
vk |
⊢ 𝑘 |
3 |
|
vf |
⊢ 𝑓 |
4 |
|
va |
⊢ 𝑎 |
5 |
|
cn |
⊢ ℕ |
6 |
|
vd |
⊢ 𝑑 |
7 |
|
cmap |
⊢ ↑m |
8 |
|
c1 |
⊢ 1 |
9 |
|
cfz |
⊢ ... |
10 |
1
|
cv |
⊢ 𝑚 |
11 |
8 10 9
|
co |
⊢ ( 1 ... 𝑚 ) |
12 |
5 11 7
|
co |
⊢ ( ℕ ↑m ( 1 ... 𝑚 ) ) |
13 |
|
vi |
⊢ 𝑖 |
14 |
4
|
cv |
⊢ 𝑎 |
15 |
|
caddc |
⊢ + |
16 |
6
|
cv |
⊢ 𝑑 |
17 |
13
|
cv |
⊢ 𝑖 |
18 |
17 16
|
cfv |
⊢ ( 𝑑 ‘ 𝑖 ) |
19 |
14 18 15
|
co |
⊢ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) |
20 |
|
cvdwa |
⊢ AP |
21 |
2
|
cv |
⊢ 𝑘 |
22 |
21 20
|
cfv |
⊢ ( AP ‘ 𝑘 ) |
23 |
19 18 22
|
co |
⊢ ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝑘 ) ( 𝑑 ‘ 𝑖 ) ) |
24 |
3
|
cv |
⊢ 𝑓 |
25 |
24
|
ccnv |
⊢ ◡ 𝑓 |
26 |
19 24
|
cfv |
⊢ ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) |
27 |
26
|
csn |
⊢ { ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } |
28 |
25 27
|
cima |
⊢ ( ◡ 𝑓 “ { ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) |
29 |
23 28
|
wss |
⊢ ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝑘 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝑓 “ { ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) |
30 |
29 13 11
|
wral |
⊢ ∀ 𝑖 ∈ ( 1 ... 𝑚 ) ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝑘 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝑓 “ { ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) |
31 |
|
chash |
⊢ ♯ |
32 |
13 11 26
|
cmpt |
⊢ ( 𝑖 ∈ ( 1 ... 𝑚 ) ↦ ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) |
33 |
32
|
crn |
⊢ ran ( 𝑖 ∈ ( 1 ... 𝑚 ) ↦ ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) |
34 |
33 31
|
cfv |
⊢ ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... 𝑚 ) ↦ ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) ) |
35 |
34 10
|
wceq |
⊢ ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... 𝑚 ) ↦ ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) ) = 𝑚 |
36 |
30 35
|
wa |
⊢ ( ∀ 𝑖 ∈ ( 1 ... 𝑚 ) ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝑘 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝑓 “ { ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ∧ ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... 𝑚 ) ↦ ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) ) = 𝑚 ) |
37 |
36 6 12
|
wrex |
⊢ ∃ 𝑑 ∈ ( ℕ ↑m ( 1 ... 𝑚 ) ) ( ∀ 𝑖 ∈ ( 1 ... 𝑚 ) ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝑘 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝑓 “ { ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ∧ ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... 𝑚 ) ↦ ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) ) = 𝑚 ) |
38 |
37 4 5
|
wrex |
⊢ ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ( ℕ ↑m ( 1 ... 𝑚 ) ) ( ∀ 𝑖 ∈ ( 1 ... 𝑚 ) ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝑘 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝑓 “ { ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ∧ ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... 𝑚 ) ↦ ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) ) = 𝑚 ) |
39 |
38 1 2 3
|
coprab |
⊢ { 〈 〈 𝑚 , 𝑘 〉 , 𝑓 〉 ∣ ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ( ℕ ↑m ( 1 ... 𝑚 ) ) ( ∀ 𝑖 ∈ ( 1 ... 𝑚 ) ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝑘 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝑓 “ { ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ∧ ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... 𝑚 ) ↦ ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) ) = 𝑚 ) } |
40 |
0 39
|
wceq |
⊢ PolyAP = { 〈 〈 𝑚 , 𝑘 〉 , 𝑓 〉 ∣ ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ( ℕ ↑m ( 1 ... 𝑚 ) ) ( ∀ 𝑖 ∈ ( 1 ... 𝑚 ) ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝑘 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝑓 “ { ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ∧ ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... 𝑚 ) ↦ ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) ) = 𝑚 ) } |