| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vdwmc.1 | ⊢ 𝑋  ∈  V | 
						
							| 2 |  | vdwmc.2 | ⊢ ( 𝜑  →  𝐾  ∈  ℕ0 ) | 
						
							| 3 |  | vdwmc.3 | ⊢ ( 𝜑  →  𝐹 : 𝑋 ⟶ 𝑅 ) | 
						
							| 4 |  | vdwpc.4 | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 5 |  | vdwpc.5 | ⊢ 𝐽  =  ( 1 ... 𝑀 ) | 
						
							| 6 |  | fex | ⊢ ( ( 𝐹 : 𝑋 ⟶ 𝑅  ∧  𝑋  ∈  V )  →  𝐹  ∈  V ) | 
						
							| 7 | 3 1 6 | sylancl | ⊢ ( 𝜑  →  𝐹  ∈  V ) | 
						
							| 8 |  | df-br | ⊢ ( 〈 𝑀 ,  𝐾 〉  PolyAP  𝐹  ↔  〈 〈 𝑀 ,  𝐾 〉 ,  𝐹 〉  ∈   PolyAP  ) | 
						
							| 9 |  | df-vdwpc | ⊢  PolyAP   =  { 〈 〈 𝑚 ,  𝑘 〉 ,  𝑓 〉  ∣  ∃ 𝑎  ∈  ℕ ∃ 𝑑  ∈  ( ℕ  ↑m  ( 1 ... 𝑚 ) ) ( ∀ 𝑖  ∈  ( 1 ... 𝑚 ) ( ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝑘 ) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( ◡ 𝑓  “  { ( 𝑓 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) } )  ∧  ( ♯ ‘ ran  ( 𝑖  ∈  ( 1 ... 𝑚 )  ↦  ( 𝑓 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) ) )  =  𝑚 ) } | 
						
							| 10 | 9 | eleq2i | ⊢ ( 〈 〈 𝑀 ,  𝐾 〉 ,  𝐹 〉  ∈   PolyAP   ↔  〈 〈 𝑀 ,  𝐾 〉 ,  𝐹 〉  ∈  { 〈 〈 𝑚 ,  𝑘 〉 ,  𝑓 〉  ∣  ∃ 𝑎  ∈  ℕ ∃ 𝑑  ∈  ( ℕ  ↑m  ( 1 ... 𝑚 ) ) ( ∀ 𝑖  ∈  ( 1 ... 𝑚 ) ( ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝑘 ) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( ◡ 𝑓  “  { ( 𝑓 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) } )  ∧  ( ♯ ‘ ran  ( 𝑖  ∈  ( 1 ... 𝑚 )  ↦  ( 𝑓 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) ) )  =  𝑚 ) } ) | 
						
							| 11 | 8 10 | bitri | ⊢ ( 〈 𝑀 ,  𝐾 〉  PolyAP  𝐹  ↔  〈 〈 𝑀 ,  𝐾 〉 ,  𝐹 〉  ∈  { 〈 〈 𝑚 ,  𝑘 〉 ,  𝑓 〉  ∣  ∃ 𝑎  ∈  ℕ ∃ 𝑑  ∈  ( ℕ  ↑m  ( 1 ... 𝑚 ) ) ( ∀ 𝑖  ∈  ( 1 ... 𝑚 ) ( ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝑘 ) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( ◡ 𝑓  “  { ( 𝑓 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) } )  ∧  ( ♯ ‘ ran  ( 𝑖  ∈  ( 1 ... 𝑚 )  ↦  ( 𝑓 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) ) )  =  𝑚 ) } ) | 
						
							| 12 |  | simp1 | ⊢ ( ( 𝑚  =  𝑀  ∧  𝑘  =  𝐾  ∧  𝑓  =  𝐹 )  →  𝑚  =  𝑀 ) | 
						
							| 13 | 12 | oveq2d | ⊢ ( ( 𝑚  =  𝑀  ∧  𝑘  =  𝐾  ∧  𝑓  =  𝐹 )  →  ( 1 ... 𝑚 )  =  ( 1 ... 𝑀 ) ) | 
						
							| 14 | 13 5 | eqtr4di | ⊢ ( ( 𝑚  =  𝑀  ∧  𝑘  =  𝐾  ∧  𝑓  =  𝐹 )  →  ( 1 ... 𝑚 )  =  𝐽 ) | 
						
							| 15 | 14 | oveq2d | ⊢ ( ( 𝑚  =  𝑀  ∧  𝑘  =  𝐾  ∧  𝑓  =  𝐹 )  →  ( ℕ  ↑m  ( 1 ... 𝑚 ) )  =  ( ℕ  ↑m  𝐽 ) ) | 
						
							| 16 |  | simp2 | ⊢ ( ( 𝑚  =  𝑀  ∧  𝑘  =  𝐾  ∧  𝑓  =  𝐹 )  →  𝑘  =  𝐾 ) | 
						
							| 17 | 16 | fveq2d | ⊢ ( ( 𝑚  =  𝑀  ∧  𝑘  =  𝐾  ∧  𝑓  =  𝐹 )  →  ( AP ‘ 𝑘 )  =  ( AP ‘ 𝐾 ) ) | 
						
							| 18 | 17 | oveqd | ⊢ ( ( 𝑚  =  𝑀  ∧  𝑘  =  𝐾  ∧  𝑓  =  𝐹 )  →  ( ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝑘 ) ( 𝑑 ‘ 𝑖 ) )  =  ( ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ) | 
						
							| 19 |  | simp3 | ⊢ ( ( 𝑚  =  𝑀  ∧  𝑘  =  𝐾  ∧  𝑓  =  𝐹 )  →  𝑓  =  𝐹 ) | 
						
							| 20 | 19 | cnveqd | ⊢ ( ( 𝑚  =  𝑀  ∧  𝑘  =  𝐾  ∧  𝑓  =  𝐹 )  →  ◡ 𝑓  =  ◡ 𝐹 ) | 
						
							| 21 | 19 | fveq1d | ⊢ ( ( 𝑚  =  𝑀  ∧  𝑘  =  𝐾  ∧  𝑓  =  𝐹 )  →  ( 𝑓 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) )  =  ( 𝐹 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) ) | 
						
							| 22 | 21 | sneqd | ⊢ ( ( 𝑚  =  𝑀  ∧  𝑘  =  𝐾  ∧  𝑓  =  𝐹 )  →  { ( 𝑓 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) }  =  { ( 𝐹 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) } ) | 
						
							| 23 | 20 22 | imaeq12d | ⊢ ( ( 𝑚  =  𝑀  ∧  𝑘  =  𝐾  ∧  𝑓  =  𝐹 )  →  ( ◡ 𝑓  “  { ( 𝑓 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) } )  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) } ) ) | 
						
							| 24 | 18 23 | sseq12d | ⊢ ( ( 𝑚  =  𝑀  ∧  𝑘  =  𝐾  ∧  𝑓  =  𝐹 )  →  ( ( ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝑘 ) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( ◡ 𝑓  “  { ( 𝑓 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) } )  ↔  ( ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( ◡ 𝐹  “  { ( 𝐹 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) } ) ) ) | 
						
							| 25 | 14 24 | raleqbidv | ⊢ ( ( 𝑚  =  𝑀  ∧  𝑘  =  𝐾  ∧  𝑓  =  𝐹 )  →  ( ∀ 𝑖  ∈  ( 1 ... 𝑚 ) ( ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝑘 ) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( ◡ 𝑓  “  { ( 𝑓 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) } )  ↔  ∀ 𝑖  ∈  𝐽 ( ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( ◡ 𝐹  “  { ( 𝐹 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) } ) ) ) | 
						
							| 26 | 14 21 | mpteq12dv | ⊢ ( ( 𝑚  =  𝑀  ∧  𝑘  =  𝐾  ∧  𝑓  =  𝐹 )  →  ( 𝑖  ∈  ( 1 ... 𝑚 )  ↦  ( 𝑓 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) )  =  ( 𝑖  ∈  𝐽  ↦  ( 𝐹 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) ) ) | 
						
							| 27 | 26 | rneqd | ⊢ ( ( 𝑚  =  𝑀  ∧  𝑘  =  𝐾  ∧  𝑓  =  𝐹 )  →  ran  ( 𝑖  ∈  ( 1 ... 𝑚 )  ↦  ( 𝑓 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) )  =  ran  ( 𝑖  ∈  𝐽  ↦  ( 𝐹 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) ) ) | 
						
							| 28 | 27 | fveq2d | ⊢ ( ( 𝑚  =  𝑀  ∧  𝑘  =  𝐾  ∧  𝑓  =  𝐹 )  →  ( ♯ ‘ ran  ( 𝑖  ∈  ( 1 ... 𝑚 )  ↦  ( 𝑓 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) ) )  =  ( ♯ ‘ ran  ( 𝑖  ∈  𝐽  ↦  ( 𝐹 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 29 | 28 12 | eqeq12d | ⊢ ( ( 𝑚  =  𝑀  ∧  𝑘  =  𝐾  ∧  𝑓  =  𝐹 )  →  ( ( ♯ ‘ ran  ( 𝑖  ∈  ( 1 ... 𝑚 )  ↦  ( 𝑓 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) ) )  =  𝑚  ↔  ( ♯ ‘ ran  ( 𝑖  ∈  𝐽  ↦  ( 𝐹 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) ) )  =  𝑀 ) ) | 
						
							| 30 | 25 29 | anbi12d | ⊢ ( ( 𝑚  =  𝑀  ∧  𝑘  =  𝐾  ∧  𝑓  =  𝐹 )  →  ( ( ∀ 𝑖  ∈  ( 1 ... 𝑚 ) ( ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝑘 ) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( ◡ 𝑓  “  { ( 𝑓 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) } )  ∧  ( ♯ ‘ ran  ( 𝑖  ∈  ( 1 ... 𝑚 )  ↦  ( 𝑓 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) ) )  =  𝑚 )  ↔  ( ∀ 𝑖  ∈  𝐽 ( ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( ◡ 𝐹  “  { ( 𝐹 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) } )  ∧  ( ♯ ‘ ran  ( 𝑖  ∈  𝐽  ↦  ( 𝐹 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) ) )  =  𝑀 ) ) ) | 
						
							| 31 | 15 30 | rexeqbidv | ⊢ ( ( 𝑚  =  𝑀  ∧  𝑘  =  𝐾  ∧  𝑓  =  𝐹 )  →  ( ∃ 𝑑  ∈  ( ℕ  ↑m  ( 1 ... 𝑚 ) ) ( ∀ 𝑖  ∈  ( 1 ... 𝑚 ) ( ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝑘 ) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( ◡ 𝑓  “  { ( 𝑓 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) } )  ∧  ( ♯ ‘ ran  ( 𝑖  ∈  ( 1 ... 𝑚 )  ↦  ( 𝑓 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) ) )  =  𝑚 )  ↔  ∃ 𝑑  ∈  ( ℕ  ↑m  𝐽 ) ( ∀ 𝑖  ∈  𝐽 ( ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( ◡ 𝐹  “  { ( 𝐹 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) } )  ∧  ( ♯ ‘ ran  ( 𝑖  ∈  𝐽  ↦  ( 𝐹 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) ) )  =  𝑀 ) ) ) | 
						
							| 32 | 31 | rexbidv | ⊢ ( ( 𝑚  =  𝑀  ∧  𝑘  =  𝐾  ∧  𝑓  =  𝐹 )  →  ( ∃ 𝑎  ∈  ℕ ∃ 𝑑  ∈  ( ℕ  ↑m  ( 1 ... 𝑚 ) ) ( ∀ 𝑖  ∈  ( 1 ... 𝑚 ) ( ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝑘 ) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( ◡ 𝑓  “  { ( 𝑓 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) } )  ∧  ( ♯ ‘ ran  ( 𝑖  ∈  ( 1 ... 𝑚 )  ↦  ( 𝑓 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) ) )  =  𝑚 )  ↔  ∃ 𝑎  ∈  ℕ ∃ 𝑑  ∈  ( ℕ  ↑m  𝐽 ) ( ∀ 𝑖  ∈  𝐽 ( ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( ◡ 𝐹  “  { ( 𝐹 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) } )  ∧  ( ♯ ‘ ran  ( 𝑖  ∈  𝐽  ↦  ( 𝐹 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) ) )  =  𝑀 ) ) ) | 
						
							| 33 | 32 | eloprabga | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝐾  ∈  ℕ0  ∧  𝐹  ∈  V )  →  ( 〈 〈 𝑀 ,  𝐾 〉 ,  𝐹 〉  ∈  { 〈 〈 𝑚 ,  𝑘 〉 ,  𝑓 〉  ∣  ∃ 𝑎  ∈  ℕ ∃ 𝑑  ∈  ( ℕ  ↑m  ( 1 ... 𝑚 ) ) ( ∀ 𝑖  ∈  ( 1 ... 𝑚 ) ( ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝑘 ) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( ◡ 𝑓  “  { ( 𝑓 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) } )  ∧  ( ♯ ‘ ran  ( 𝑖  ∈  ( 1 ... 𝑚 )  ↦  ( 𝑓 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) ) )  =  𝑚 ) }  ↔  ∃ 𝑎  ∈  ℕ ∃ 𝑑  ∈  ( ℕ  ↑m  𝐽 ) ( ∀ 𝑖  ∈  𝐽 ( ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( ◡ 𝐹  “  { ( 𝐹 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) } )  ∧  ( ♯ ‘ ran  ( 𝑖  ∈  𝐽  ↦  ( 𝐹 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) ) )  =  𝑀 ) ) ) | 
						
							| 34 | 11 33 | bitrid | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝐾  ∈  ℕ0  ∧  𝐹  ∈  V )  →  ( 〈 𝑀 ,  𝐾 〉  PolyAP  𝐹  ↔  ∃ 𝑎  ∈  ℕ ∃ 𝑑  ∈  ( ℕ  ↑m  𝐽 ) ( ∀ 𝑖  ∈  𝐽 ( ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( ◡ 𝐹  “  { ( 𝐹 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) } )  ∧  ( ♯ ‘ ran  ( 𝑖  ∈  𝐽  ↦  ( 𝐹 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) ) )  =  𝑀 ) ) ) | 
						
							| 35 | 4 2 7 34 | syl3anc | ⊢ ( 𝜑  →  ( 〈 𝑀 ,  𝐾 〉  PolyAP  𝐹  ↔  ∃ 𝑎  ∈  ℕ ∃ 𝑑  ∈  ( ℕ  ↑m  𝐽 ) ( ∀ 𝑖  ∈  𝐽 ( ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( ◡ 𝐹  “  { ( 𝐹 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) } )  ∧  ( ♯ ‘ ran  ( 𝑖  ∈  𝐽  ↦  ( 𝐹 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) ) )  =  𝑀 ) ) ) |