Step |
Hyp |
Ref |
Expression |
1 |
|
vdwmc.1 |
⊢ 𝑋 ∈ V |
2 |
|
vdwmc.2 |
⊢ ( 𝜑 → 𝐾 ∈ ℕ0 ) |
3 |
|
vdwmc.3 |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ 𝑅 ) |
4 |
|
vdwpc.4 |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
5 |
|
vdwpc.5 |
⊢ 𝐽 = ( 1 ... 𝑀 ) |
6 |
|
fex |
⊢ ( ( 𝐹 : 𝑋 ⟶ 𝑅 ∧ 𝑋 ∈ V ) → 𝐹 ∈ V ) |
7 |
3 1 6
|
sylancl |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
8 |
|
df-br |
⊢ ( 〈 𝑀 , 𝐾 〉 PolyAP 𝐹 ↔ 〈 〈 𝑀 , 𝐾 〉 , 𝐹 〉 ∈ PolyAP ) |
9 |
|
df-vdwpc |
⊢ PolyAP = { 〈 〈 𝑚 , 𝑘 〉 , 𝑓 〉 ∣ ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ( ℕ ↑m ( 1 ... 𝑚 ) ) ( ∀ 𝑖 ∈ ( 1 ... 𝑚 ) ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝑘 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝑓 “ { ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ∧ ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... 𝑚 ) ↦ ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) ) = 𝑚 ) } |
10 |
9
|
eleq2i |
⊢ ( 〈 〈 𝑀 , 𝐾 〉 , 𝐹 〉 ∈ PolyAP ↔ 〈 〈 𝑀 , 𝐾 〉 , 𝐹 〉 ∈ { 〈 〈 𝑚 , 𝑘 〉 , 𝑓 〉 ∣ ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ( ℕ ↑m ( 1 ... 𝑚 ) ) ( ∀ 𝑖 ∈ ( 1 ... 𝑚 ) ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝑘 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝑓 “ { ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ∧ ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... 𝑚 ) ↦ ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) ) = 𝑚 ) } ) |
11 |
8 10
|
bitri |
⊢ ( 〈 𝑀 , 𝐾 〉 PolyAP 𝐹 ↔ 〈 〈 𝑀 , 𝐾 〉 , 𝐹 〉 ∈ { 〈 〈 𝑚 , 𝑘 〉 , 𝑓 〉 ∣ ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ( ℕ ↑m ( 1 ... 𝑚 ) ) ( ∀ 𝑖 ∈ ( 1 ... 𝑚 ) ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝑘 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝑓 “ { ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ∧ ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... 𝑚 ) ↦ ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) ) = 𝑚 ) } ) |
12 |
|
simp1 |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑘 = 𝐾 ∧ 𝑓 = 𝐹 ) → 𝑚 = 𝑀 ) |
13 |
12
|
oveq2d |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑘 = 𝐾 ∧ 𝑓 = 𝐹 ) → ( 1 ... 𝑚 ) = ( 1 ... 𝑀 ) ) |
14 |
13 5
|
eqtr4di |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑘 = 𝐾 ∧ 𝑓 = 𝐹 ) → ( 1 ... 𝑚 ) = 𝐽 ) |
15 |
14
|
oveq2d |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑘 = 𝐾 ∧ 𝑓 = 𝐹 ) → ( ℕ ↑m ( 1 ... 𝑚 ) ) = ( ℕ ↑m 𝐽 ) ) |
16 |
|
simp2 |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑘 = 𝐾 ∧ 𝑓 = 𝐹 ) → 𝑘 = 𝐾 ) |
17 |
16
|
fveq2d |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑘 = 𝐾 ∧ 𝑓 = 𝐹 ) → ( AP ‘ 𝑘 ) = ( AP ‘ 𝐾 ) ) |
18 |
17
|
oveqd |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑘 = 𝐾 ∧ 𝑓 = 𝐹 ) → ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝑘 ) ( 𝑑 ‘ 𝑖 ) ) = ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ) |
19 |
|
simp3 |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑘 = 𝐾 ∧ 𝑓 = 𝐹 ) → 𝑓 = 𝐹 ) |
20 |
19
|
cnveqd |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑘 = 𝐾 ∧ 𝑓 = 𝐹 ) → ◡ 𝑓 = ◡ 𝐹 ) |
21 |
19
|
fveq1d |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑘 = 𝐾 ∧ 𝑓 = 𝐹 ) → ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) |
22 |
21
|
sneqd |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑘 = 𝐾 ∧ 𝑓 = 𝐹 ) → { ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } = { ( 𝐹 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) |
23 |
20 22
|
imaeq12d |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑘 = 𝐾 ∧ 𝑓 = 𝐹 ) → ( ◡ 𝑓 “ { ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) = ( ◡ 𝐹 “ { ( 𝐹 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ) |
24 |
18 23
|
sseq12d |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑘 = 𝐾 ∧ 𝑓 = 𝐹 ) → ( ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝑘 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝑓 “ { ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ↔ ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝐹 “ { ( 𝐹 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ) ) |
25 |
14 24
|
raleqbidv |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑘 = 𝐾 ∧ 𝑓 = 𝐹 ) → ( ∀ 𝑖 ∈ ( 1 ... 𝑚 ) ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝑘 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝑓 “ { ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ↔ ∀ 𝑖 ∈ 𝐽 ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝐹 “ { ( 𝐹 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ) ) |
26 |
14 21
|
mpteq12dv |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑘 = 𝐾 ∧ 𝑓 = 𝐹 ) → ( 𝑖 ∈ ( 1 ... 𝑚 ) ↦ ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) = ( 𝑖 ∈ 𝐽 ↦ ( 𝐹 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) ) |
27 |
26
|
rneqd |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑘 = 𝐾 ∧ 𝑓 = 𝐹 ) → ran ( 𝑖 ∈ ( 1 ... 𝑚 ) ↦ ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) = ran ( 𝑖 ∈ 𝐽 ↦ ( 𝐹 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) ) |
28 |
27
|
fveq2d |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑘 = 𝐾 ∧ 𝑓 = 𝐹 ) → ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... 𝑚 ) ↦ ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) ) = ( ♯ ‘ ran ( 𝑖 ∈ 𝐽 ↦ ( 𝐹 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) ) ) |
29 |
28 12
|
eqeq12d |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑘 = 𝐾 ∧ 𝑓 = 𝐹 ) → ( ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... 𝑚 ) ↦ ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) ) = 𝑚 ↔ ( ♯ ‘ ran ( 𝑖 ∈ 𝐽 ↦ ( 𝐹 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) ) = 𝑀 ) ) |
30 |
25 29
|
anbi12d |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑘 = 𝐾 ∧ 𝑓 = 𝐹 ) → ( ( ∀ 𝑖 ∈ ( 1 ... 𝑚 ) ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝑘 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝑓 “ { ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ∧ ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... 𝑚 ) ↦ ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) ) = 𝑚 ) ↔ ( ∀ 𝑖 ∈ 𝐽 ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝐹 “ { ( 𝐹 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ∧ ( ♯ ‘ ran ( 𝑖 ∈ 𝐽 ↦ ( 𝐹 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) ) = 𝑀 ) ) ) |
31 |
15 30
|
rexeqbidv |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑘 = 𝐾 ∧ 𝑓 = 𝐹 ) → ( ∃ 𝑑 ∈ ( ℕ ↑m ( 1 ... 𝑚 ) ) ( ∀ 𝑖 ∈ ( 1 ... 𝑚 ) ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝑘 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝑓 “ { ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ∧ ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... 𝑚 ) ↦ ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) ) = 𝑚 ) ↔ ∃ 𝑑 ∈ ( ℕ ↑m 𝐽 ) ( ∀ 𝑖 ∈ 𝐽 ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝐹 “ { ( 𝐹 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ∧ ( ♯ ‘ ran ( 𝑖 ∈ 𝐽 ↦ ( 𝐹 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) ) = 𝑀 ) ) ) |
32 |
31
|
rexbidv |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑘 = 𝐾 ∧ 𝑓 = 𝐹 ) → ( ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ( ℕ ↑m ( 1 ... 𝑚 ) ) ( ∀ 𝑖 ∈ ( 1 ... 𝑚 ) ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝑘 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝑓 “ { ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ∧ ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... 𝑚 ) ↦ ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) ) = 𝑚 ) ↔ ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ( ℕ ↑m 𝐽 ) ( ∀ 𝑖 ∈ 𝐽 ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝐹 “ { ( 𝐹 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ∧ ( ♯ ‘ ran ( 𝑖 ∈ 𝐽 ↦ ( 𝐹 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) ) = 𝑀 ) ) ) |
33 |
32
|
eloprabga |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ∧ 𝐹 ∈ V ) → ( 〈 〈 𝑀 , 𝐾 〉 , 𝐹 〉 ∈ { 〈 〈 𝑚 , 𝑘 〉 , 𝑓 〉 ∣ ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ( ℕ ↑m ( 1 ... 𝑚 ) ) ( ∀ 𝑖 ∈ ( 1 ... 𝑚 ) ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝑘 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝑓 “ { ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ∧ ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... 𝑚 ) ↦ ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) ) = 𝑚 ) } ↔ ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ( ℕ ↑m 𝐽 ) ( ∀ 𝑖 ∈ 𝐽 ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝐹 “ { ( 𝐹 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ∧ ( ♯ ‘ ran ( 𝑖 ∈ 𝐽 ↦ ( 𝐹 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) ) = 𝑀 ) ) ) |
34 |
11 33
|
syl5bb |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ∧ 𝐹 ∈ V ) → ( 〈 𝑀 , 𝐾 〉 PolyAP 𝐹 ↔ ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ( ℕ ↑m 𝐽 ) ( ∀ 𝑖 ∈ 𝐽 ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝐹 “ { ( 𝐹 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ∧ ( ♯ ‘ ran ( 𝑖 ∈ 𝐽 ↦ ( 𝐹 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) ) = 𝑀 ) ) ) |
35 |
4 2 7 34
|
syl3anc |
⊢ ( 𝜑 → ( 〈 𝑀 , 𝐾 〉 PolyAP 𝐹 ↔ ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ( ℕ ↑m 𝐽 ) ( ∀ 𝑖 ∈ 𝐽 ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝐹 “ { ( 𝐹 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ∧ ( ♯ ‘ ran ( 𝑖 ∈ 𝐽 ↦ ( 𝐹 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) ) = 𝑀 ) ) ) |