Step |
Hyp |
Ref |
Expression |
1 |
|
vdwmc.1 |
|- X e. _V |
2 |
|
vdwmc.2 |
|- ( ph -> K e. NN0 ) |
3 |
|
vdwmc.3 |
|- ( ph -> F : X --> R ) |
4 |
|
vdwpc.4 |
|- ( ph -> M e. NN ) |
5 |
|
vdwpc.5 |
|- J = ( 1 ... M ) |
6 |
|
fex |
|- ( ( F : X --> R /\ X e. _V ) -> F e. _V ) |
7 |
3 1 6
|
sylancl |
|- ( ph -> F e. _V ) |
8 |
|
df-br |
|- ( <. M , K >. PolyAP F <-> <. <. M , K >. , F >. e. PolyAP ) |
9 |
|
df-vdwpc |
|- PolyAP = { <. <. m , k >. , f >. | E. a e. NN E. d e. ( NN ^m ( 1 ... m ) ) ( A. i e. ( 1 ... m ) ( ( a + ( d ` i ) ) ( AP ` k ) ( d ` i ) ) C_ ( `' f " { ( f ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... m ) |-> ( f ` ( a + ( d ` i ) ) ) ) ) = m ) } |
10 |
9
|
eleq2i |
|- ( <. <. M , K >. , F >. e. PolyAP <-> <. <. M , K >. , F >. e. { <. <. m , k >. , f >. | E. a e. NN E. d e. ( NN ^m ( 1 ... m ) ) ( A. i e. ( 1 ... m ) ( ( a + ( d ` i ) ) ( AP ` k ) ( d ` i ) ) C_ ( `' f " { ( f ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... m ) |-> ( f ` ( a + ( d ` i ) ) ) ) ) = m ) } ) |
11 |
8 10
|
bitri |
|- ( <. M , K >. PolyAP F <-> <. <. M , K >. , F >. e. { <. <. m , k >. , f >. | E. a e. NN E. d e. ( NN ^m ( 1 ... m ) ) ( A. i e. ( 1 ... m ) ( ( a + ( d ` i ) ) ( AP ` k ) ( d ` i ) ) C_ ( `' f " { ( f ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... m ) |-> ( f ` ( a + ( d ` i ) ) ) ) ) = m ) } ) |
12 |
|
simp1 |
|- ( ( m = M /\ k = K /\ f = F ) -> m = M ) |
13 |
12
|
oveq2d |
|- ( ( m = M /\ k = K /\ f = F ) -> ( 1 ... m ) = ( 1 ... M ) ) |
14 |
13 5
|
eqtr4di |
|- ( ( m = M /\ k = K /\ f = F ) -> ( 1 ... m ) = J ) |
15 |
14
|
oveq2d |
|- ( ( m = M /\ k = K /\ f = F ) -> ( NN ^m ( 1 ... m ) ) = ( NN ^m J ) ) |
16 |
|
simp2 |
|- ( ( m = M /\ k = K /\ f = F ) -> k = K ) |
17 |
16
|
fveq2d |
|- ( ( m = M /\ k = K /\ f = F ) -> ( AP ` k ) = ( AP ` K ) ) |
18 |
17
|
oveqd |
|- ( ( m = M /\ k = K /\ f = F ) -> ( ( a + ( d ` i ) ) ( AP ` k ) ( d ` i ) ) = ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) ) |
19 |
|
simp3 |
|- ( ( m = M /\ k = K /\ f = F ) -> f = F ) |
20 |
19
|
cnveqd |
|- ( ( m = M /\ k = K /\ f = F ) -> `' f = `' F ) |
21 |
19
|
fveq1d |
|- ( ( m = M /\ k = K /\ f = F ) -> ( f ` ( a + ( d ` i ) ) ) = ( F ` ( a + ( d ` i ) ) ) ) |
22 |
21
|
sneqd |
|- ( ( m = M /\ k = K /\ f = F ) -> { ( f ` ( a + ( d ` i ) ) ) } = { ( F ` ( a + ( d ` i ) ) ) } ) |
23 |
20 22
|
imaeq12d |
|- ( ( m = M /\ k = K /\ f = F ) -> ( `' f " { ( f ` ( a + ( d ` i ) ) ) } ) = ( `' F " { ( F ` ( a + ( d ` i ) ) ) } ) ) |
24 |
18 23
|
sseq12d |
|- ( ( m = M /\ k = K /\ f = F ) -> ( ( ( a + ( d ` i ) ) ( AP ` k ) ( d ` i ) ) C_ ( `' f " { ( f ` ( a + ( d ` i ) ) ) } ) <-> ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' F " { ( F ` ( a + ( d ` i ) ) ) } ) ) ) |
25 |
14 24
|
raleqbidv |
|- ( ( m = M /\ k = K /\ f = F ) -> ( A. i e. ( 1 ... m ) ( ( a + ( d ` i ) ) ( AP ` k ) ( d ` i ) ) C_ ( `' f " { ( f ` ( a + ( d ` i ) ) ) } ) <-> A. i e. J ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' F " { ( F ` ( a + ( d ` i ) ) ) } ) ) ) |
26 |
14 21
|
mpteq12dv |
|- ( ( m = M /\ k = K /\ f = F ) -> ( i e. ( 1 ... m ) |-> ( f ` ( a + ( d ` i ) ) ) ) = ( i e. J |-> ( F ` ( a + ( d ` i ) ) ) ) ) |
27 |
26
|
rneqd |
|- ( ( m = M /\ k = K /\ f = F ) -> ran ( i e. ( 1 ... m ) |-> ( f ` ( a + ( d ` i ) ) ) ) = ran ( i e. J |-> ( F ` ( a + ( d ` i ) ) ) ) ) |
28 |
27
|
fveq2d |
|- ( ( m = M /\ k = K /\ f = F ) -> ( # ` ran ( i e. ( 1 ... m ) |-> ( f ` ( a + ( d ` i ) ) ) ) ) = ( # ` ran ( i e. J |-> ( F ` ( a + ( d ` i ) ) ) ) ) ) |
29 |
28 12
|
eqeq12d |
|- ( ( m = M /\ k = K /\ f = F ) -> ( ( # ` ran ( i e. ( 1 ... m ) |-> ( f ` ( a + ( d ` i ) ) ) ) ) = m <-> ( # ` ran ( i e. J |-> ( F ` ( a + ( d ` i ) ) ) ) ) = M ) ) |
30 |
25 29
|
anbi12d |
|- ( ( m = M /\ k = K /\ f = F ) -> ( ( A. i e. ( 1 ... m ) ( ( a + ( d ` i ) ) ( AP ` k ) ( d ` i ) ) C_ ( `' f " { ( f ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... m ) |-> ( f ` ( a + ( d ` i ) ) ) ) ) = m ) <-> ( A. i e. J ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' F " { ( F ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. J |-> ( F ` ( a + ( d ` i ) ) ) ) ) = M ) ) ) |
31 |
15 30
|
rexeqbidv |
|- ( ( m = M /\ k = K /\ f = F ) -> ( E. d e. ( NN ^m ( 1 ... m ) ) ( A. i e. ( 1 ... m ) ( ( a + ( d ` i ) ) ( AP ` k ) ( d ` i ) ) C_ ( `' f " { ( f ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... m ) |-> ( f ` ( a + ( d ` i ) ) ) ) ) = m ) <-> E. d e. ( NN ^m J ) ( A. i e. J ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' F " { ( F ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. J |-> ( F ` ( a + ( d ` i ) ) ) ) ) = M ) ) ) |
32 |
31
|
rexbidv |
|- ( ( m = M /\ k = K /\ f = F ) -> ( E. a e. NN E. d e. ( NN ^m ( 1 ... m ) ) ( A. i e. ( 1 ... m ) ( ( a + ( d ` i ) ) ( AP ` k ) ( d ` i ) ) C_ ( `' f " { ( f ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... m ) |-> ( f ` ( a + ( d ` i ) ) ) ) ) = m ) <-> E. a e. NN E. d e. ( NN ^m J ) ( A. i e. J ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' F " { ( F ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. J |-> ( F ` ( a + ( d ` i ) ) ) ) ) = M ) ) ) |
33 |
32
|
eloprabga |
|- ( ( M e. NN /\ K e. NN0 /\ F e. _V ) -> ( <. <. M , K >. , F >. e. { <. <. m , k >. , f >. | E. a e. NN E. d e. ( NN ^m ( 1 ... m ) ) ( A. i e. ( 1 ... m ) ( ( a + ( d ` i ) ) ( AP ` k ) ( d ` i ) ) C_ ( `' f " { ( f ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... m ) |-> ( f ` ( a + ( d ` i ) ) ) ) ) = m ) } <-> E. a e. NN E. d e. ( NN ^m J ) ( A. i e. J ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' F " { ( F ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. J |-> ( F ` ( a + ( d ` i ) ) ) ) ) = M ) ) ) |
34 |
11 33
|
syl5bb |
|- ( ( M e. NN /\ K e. NN0 /\ F e. _V ) -> ( <. M , K >. PolyAP F <-> E. a e. NN E. d e. ( NN ^m J ) ( A. i e. J ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' F " { ( F ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. J |-> ( F ` ( a + ( d ` i ) ) ) ) ) = M ) ) ) |
35 |
4 2 7 34
|
syl3anc |
|- ( ph -> ( <. M , K >. PolyAP F <-> E. a e. NN E. d e. ( NN ^m J ) ( A. i e. J ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' F " { ( F ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. J |-> ( F ` ( a + ( d ` i ) ) ) ) ) = M ) ) ) |