| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vdwmc.1 |  |-  X e. _V | 
						
							| 2 |  | vdwmc.2 |  |-  ( ph -> K e. NN0 ) | 
						
							| 3 |  | vdwmc.3 |  |-  ( ph -> F : X --> R ) | 
						
							| 4 |  | vdwpc.4 |  |-  ( ph -> M e. NN ) | 
						
							| 5 |  | vdwpc.5 |  |-  J = ( 1 ... M ) | 
						
							| 6 |  | fex |  |-  ( ( F : X --> R /\ X e. _V ) -> F e. _V ) | 
						
							| 7 | 3 1 6 | sylancl |  |-  ( ph -> F e. _V ) | 
						
							| 8 |  | df-br |  |-  ( <. M , K >. PolyAP F <-> <. <. M , K >. , F >. e. PolyAP ) | 
						
							| 9 |  | df-vdwpc |  |-  PolyAP = { <. <. m , k >. , f >. | E. a e. NN E. d e. ( NN ^m ( 1 ... m ) ) ( A. i e. ( 1 ... m ) ( ( a + ( d ` i ) ) ( AP ` k ) ( d ` i ) ) C_ ( `' f " { ( f ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... m ) |-> ( f ` ( a + ( d ` i ) ) ) ) ) = m ) } | 
						
							| 10 | 9 | eleq2i |  |-  ( <. <. M , K >. , F >. e. PolyAP <-> <. <. M , K >. , F >. e. { <. <. m , k >. , f >. | E. a e. NN E. d e. ( NN ^m ( 1 ... m ) ) ( A. i e. ( 1 ... m ) ( ( a + ( d ` i ) ) ( AP ` k ) ( d ` i ) ) C_ ( `' f " { ( f ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... m ) |-> ( f ` ( a + ( d ` i ) ) ) ) ) = m ) } ) | 
						
							| 11 | 8 10 | bitri |  |-  ( <. M , K >. PolyAP F <-> <. <. M , K >. , F >. e. { <. <. m , k >. , f >. | E. a e. NN E. d e. ( NN ^m ( 1 ... m ) ) ( A. i e. ( 1 ... m ) ( ( a + ( d ` i ) ) ( AP ` k ) ( d ` i ) ) C_ ( `' f " { ( f ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... m ) |-> ( f ` ( a + ( d ` i ) ) ) ) ) = m ) } ) | 
						
							| 12 |  | simp1 |  |-  ( ( m = M /\ k = K /\ f = F ) -> m = M ) | 
						
							| 13 | 12 | oveq2d |  |-  ( ( m = M /\ k = K /\ f = F ) -> ( 1 ... m ) = ( 1 ... M ) ) | 
						
							| 14 | 13 5 | eqtr4di |  |-  ( ( m = M /\ k = K /\ f = F ) -> ( 1 ... m ) = J ) | 
						
							| 15 | 14 | oveq2d |  |-  ( ( m = M /\ k = K /\ f = F ) -> ( NN ^m ( 1 ... m ) ) = ( NN ^m J ) ) | 
						
							| 16 |  | simp2 |  |-  ( ( m = M /\ k = K /\ f = F ) -> k = K ) | 
						
							| 17 | 16 | fveq2d |  |-  ( ( m = M /\ k = K /\ f = F ) -> ( AP ` k ) = ( AP ` K ) ) | 
						
							| 18 | 17 | oveqd |  |-  ( ( m = M /\ k = K /\ f = F ) -> ( ( a + ( d ` i ) ) ( AP ` k ) ( d ` i ) ) = ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) ) | 
						
							| 19 |  | simp3 |  |-  ( ( m = M /\ k = K /\ f = F ) -> f = F ) | 
						
							| 20 | 19 | cnveqd |  |-  ( ( m = M /\ k = K /\ f = F ) -> `' f = `' F ) | 
						
							| 21 | 19 | fveq1d |  |-  ( ( m = M /\ k = K /\ f = F ) -> ( f ` ( a + ( d ` i ) ) ) = ( F ` ( a + ( d ` i ) ) ) ) | 
						
							| 22 | 21 | sneqd |  |-  ( ( m = M /\ k = K /\ f = F ) -> { ( f ` ( a + ( d ` i ) ) ) } = { ( F ` ( a + ( d ` i ) ) ) } ) | 
						
							| 23 | 20 22 | imaeq12d |  |-  ( ( m = M /\ k = K /\ f = F ) -> ( `' f " { ( f ` ( a + ( d ` i ) ) ) } ) = ( `' F " { ( F ` ( a + ( d ` i ) ) ) } ) ) | 
						
							| 24 | 18 23 | sseq12d |  |-  ( ( m = M /\ k = K /\ f = F ) -> ( ( ( a + ( d ` i ) ) ( AP ` k ) ( d ` i ) ) C_ ( `' f " { ( f ` ( a + ( d ` i ) ) ) } ) <-> ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' F " { ( F ` ( a + ( d ` i ) ) ) } ) ) ) | 
						
							| 25 | 14 24 | raleqbidv |  |-  ( ( m = M /\ k = K /\ f = F ) -> ( A. i e. ( 1 ... m ) ( ( a + ( d ` i ) ) ( AP ` k ) ( d ` i ) ) C_ ( `' f " { ( f ` ( a + ( d ` i ) ) ) } ) <-> A. i e. J ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' F " { ( F ` ( a + ( d ` i ) ) ) } ) ) ) | 
						
							| 26 | 14 21 | mpteq12dv |  |-  ( ( m = M /\ k = K /\ f = F ) -> ( i e. ( 1 ... m ) |-> ( f ` ( a + ( d ` i ) ) ) ) = ( i e. J |-> ( F ` ( a + ( d ` i ) ) ) ) ) | 
						
							| 27 | 26 | rneqd |  |-  ( ( m = M /\ k = K /\ f = F ) -> ran ( i e. ( 1 ... m ) |-> ( f ` ( a + ( d ` i ) ) ) ) = ran ( i e. J |-> ( F ` ( a + ( d ` i ) ) ) ) ) | 
						
							| 28 | 27 | fveq2d |  |-  ( ( m = M /\ k = K /\ f = F ) -> ( # ` ran ( i e. ( 1 ... m ) |-> ( f ` ( a + ( d ` i ) ) ) ) ) = ( # ` ran ( i e. J |-> ( F ` ( a + ( d ` i ) ) ) ) ) ) | 
						
							| 29 | 28 12 | eqeq12d |  |-  ( ( m = M /\ k = K /\ f = F ) -> ( ( # ` ran ( i e. ( 1 ... m ) |-> ( f ` ( a + ( d ` i ) ) ) ) ) = m <-> ( # ` ran ( i e. J |-> ( F ` ( a + ( d ` i ) ) ) ) ) = M ) ) | 
						
							| 30 | 25 29 | anbi12d |  |-  ( ( m = M /\ k = K /\ f = F ) -> ( ( A. i e. ( 1 ... m ) ( ( a + ( d ` i ) ) ( AP ` k ) ( d ` i ) ) C_ ( `' f " { ( f ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... m ) |-> ( f ` ( a + ( d ` i ) ) ) ) ) = m ) <-> ( A. i e. J ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' F " { ( F ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. J |-> ( F ` ( a + ( d ` i ) ) ) ) ) = M ) ) ) | 
						
							| 31 | 15 30 | rexeqbidv |  |-  ( ( m = M /\ k = K /\ f = F ) -> ( E. d e. ( NN ^m ( 1 ... m ) ) ( A. i e. ( 1 ... m ) ( ( a + ( d ` i ) ) ( AP ` k ) ( d ` i ) ) C_ ( `' f " { ( f ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... m ) |-> ( f ` ( a + ( d ` i ) ) ) ) ) = m ) <-> E. d e. ( NN ^m J ) ( A. i e. J ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' F " { ( F ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. J |-> ( F ` ( a + ( d ` i ) ) ) ) ) = M ) ) ) | 
						
							| 32 | 31 | rexbidv |  |-  ( ( m = M /\ k = K /\ f = F ) -> ( E. a e. NN E. d e. ( NN ^m ( 1 ... m ) ) ( A. i e. ( 1 ... m ) ( ( a + ( d ` i ) ) ( AP ` k ) ( d ` i ) ) C_ ( `' f " { ( f ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... m ) |-> ( f ` ( a + ( d ` i ) ) ) ) ) = m ) <-> E. a e. NN E. d e. ( NN ^m J ) ( A. i e. J ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' F " { ( F ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. J |-> ( F ` ( a + ( d ` i ) ) ) ) ) = M ) ) ) | 
						
							| 33 | 32 | eloprabga |  |-  ( ( M e. NN /\ K e. NN0 /\ F e. _V ) -> ( <. <. M , K >. , F >. e. { <. <. m , k >. , f >. | E. a e. NN E. d e. ( NN ^m ( 1 ... m ) ) ( A. i e. ( 1 ... m ) ( ( a + ( d ` i ) ) ( AP ` k ) ( d ` i ) ) C_ ( `' f " { ( f ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... m ) |-> ( f ` ( a + ( d ` i ) ) ) ) ) = m ) } <-> E. a e. NN E. d e. ( NN ^m J ) ( A. i e. J ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' F " { ( F ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. J |-> ( F ` ( a + ( d ` i ) ) ) ) ) = M ) ) ) | 
						
							| 34 | 11 33 | bitrid |  |-  ( ( M e. NN /\ K e. NN0 /\ F e. _V ) -> ( <. M , K >. PolyAP F <-> E. a e. NN E. d e. ( NN ^m J ) ( A. i e. J ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' F " { ( F ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. J |-> ( F ` ( a + ( d ` i ) ) ) ) ) = M ) ) ) | 
						
							| 35 | 4 2 7 34 | syl3anc |  |-  ( ph -> ( <. M , K >. PolyAP F <-> E. a e. NN E. d e. ( NN ^m J ) ( A. i e. J ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' F " { ( F ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. J |-> ( F ` ( a + ( d ` i ) ) ) ) ) = M ) ) ) |