Step |
Hyp |
Ref |
Expression |
1 |
|
vdwlem1.r |
|- ( ph -> R e. Fin ) |
2 |
|
vdwlem1.k |
|- ( ph -> K e. NN ) |
3 |
|
vdwlem1.w |
|- ( ph -> W e. NN ) |
4 |
|
vdwlem1.f |
|- ( ph -> F : ( 1 ... W ) --> R ) |
5 |
|
vdwlem1.a |
|- ( ph -> A e. NN ) |
6 |
|
vdwlem1.m |
|- ( ph -> M e. NN ) |
7 |
|
vdwlem1.d |
|- ( ph -> D : ( 1 ... M ) --> NN ) |
8 |
|
vdwlem1.s |
|- ( ph -> A. i e. ( 1 ... M ) ( ( A + ( D ` i ) ) ( AP ` K ) ( D ` i ) ) C_ ( `' F " { ( F ` ( A + ( D ` i ) ) ) } ) ) |
9 |
|
vdwlem1.i |
|- ( ph -> I e. ( 1 ... M ) ) |
10 |
|
vdwlem1.e |
|- ( ph -> ( F ` A ) = ( F ` ( A + ( D ` I ) ) ) ) |
11 |
7 9
|
ffvelrnd |
|- ( ph -> ( D ` I ) e. NN ) |
12 |
2
|
nnnn0d |
|- ( ph -> K e. NN0 ) |
13 |
|
vdwapun |
|- ( ( K e. NN0 /\ A e. NN /\ ( D ` I ) e. NN ) -> ( A ( AP ` ( K + 1 ) ) ( D ` I ) ) = ( { A } u. ( ( A + ( D ` I ) ) ( AP ` K ) ( D ` I ) ) ) ) |
14 |
12 5 11 13
|
syl3anc |
|- ( ph -> ( A ( AP ` ( K + 1 ) ) ( D ` I ) ) = ( { A } u. ( ( A + ( D ` I ) ) ( AP ` K ) ( D ` I ) ) ) ) |
15 |
5
|
nnred |
|- ( ph -> A e. RR ) |
16 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
17 |
6 16
|
eleqtrdi |
|- ( ph -> M e. ( ZZ>= ` 1 ) ) |
18 |
|
eluzfz1 |
|- ( M e. ( ZZ>= ` 1 ) -> 1 e. ( 1 ... M ) ) |
19 |
17 18
|
syl |
|- ( ph -> 1 e. ( 1 ... M ) ) |
20 |
7 19
|
ffvelrnd |
|- ( ph -> ( D ` 1 ) e. NN ) |
21 |
5 20
|
nnaddcld |
|- ( ph -> ( A + ( D ` 1 ) ) e. NN ) |
22 |
21
|
nnred |
|- ( ph -> ( A + ( D ` 1 ) ) e. RR ) |
23 |
3
|
nnred |
|- ( ph -> W e. RR ) |
24 |
20
|
nnrpd |
|- ( ph -> ( D ` 1 ) e. RR+ ) |
25 |
15 24
|
ltaddrpd |
|- ( ph -> A < ( A + ( D ` 1 ) ) ) |
26 |
15 22 25
|
ltled |
|- ( ph -> A <_ ( A + ( D ` 1 ) ) ) |
27 |
|
fveq2 |
|- ( i = 1 -> ( D ` i ) = ( D ` 1 ) ) |
28 |
27
|
oveq2d |
|- ( i = 1 -> ( A + ( D ` i ) ) = ( A + ( D ` 1 ) ) ) |
29 |
28
|
eleq1d |
|- ( i = 1 -> ( ( A + ( D ` i ) ) e. ( 1 ... W ) <-> ( A + ( D ` 1 ) ) e. ( 1 ... W ) ) ) |
30 |
8
|
r19.21bi |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( ( A + ( D ` i ) ) ( AP ` K ) ( D ` i ) ) C_ ( `' F " { ( F ` ( A + ( D ` i ) ) ) } ) ) |
31 |
|
cnvimass |
|- ( `' F " { ( F ` ( A + ( D ` i ) ) ) } ) C_ dom F |
32 |
31 4
|
fssdm |
|- ( ph -> ( `' F " { ( F ` ( A + ( D ` i ) ) ) } ) C_ ( 1 ... W ) ) |
33 |
32
|
adantr |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( `' F " { ( F ` ( A + ( D ` i ) ) ) } ) C_ ( 1 ... W ) ) |
34 |
30 33
|
sstrd |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( ( A + ( D ` i ) ) ( AP ` K ) ( D ` i ) ) C_ ( 1 ... W ) ) |
35 |
|
nnm1nn0 |
|- ( K e. NN -> ( K - 1 ) e. NN0 ) |
36 |
2 35
|
syl |
|- ( ph -> ( K - 1 ) e. NN0 ) |
37 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
38 |
36 37
|
eleqtrdi |
|- ( ph -> ( K - 1 ) e. ( ZZ>= ` 0 ) ) |
39 |
|
eluzfz1 |
|- ( ( K - 1 ) e. ( ZZ>= ` 0 ) -> 0 e. ( 0 ... ( K - 1 ) ) ) |
40 |
38 39
|
syl |
|- ( ph -> 0 e. ( 0 ... ( K - 1 ) ) ) |
41 |
40
|
adantr |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> 0 e. ( 0 ... ( K - 1 ) ) ) |
42 |
7
|
ffvelrnda |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( D ` i ) e. NN ) |
43 |
42
|
nncnd |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( D ` i ) e. CC ) |
44 |
43
|
mul02d |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( 0 x. ( D ` i ) ) = 0 ) |
45 |
44
|
oveq2d |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( ( A + ( D ` i ) ) + ( 0 x. ( D ` i ) ) ) = ( ( A + ( D ` i ) ) + 0 ) ) |
46 |
5
|
adantr |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> A e. NN ) |
47 |
46 42
|
nnaddcld |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( A + ( D ` i ) ) e. NN ) |
48 |
47
|
nncnd |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( A + ( D ` i ) ) e. CC ) |
49 |
48
|
addid1d |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( ( A + ( D ` i ) ) + 0 ) = ( A + ( D ` i ) ) ) |
50 |
45 49
|
eqtr2d |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( A + ( D ` i ) ) = ( ( A + ( D ` i ) ) + ( 0 x. ( D ` i ) ) ) ) |
51 |
|
oveq1 |
|- ( m = 0 -> ( m x. ( D ` i ) ) = ( 0 x. ( D ` i ) ) ) |
52 |
51
|
oveq2d |
|- ( m = 0 -> ( ( A + ( D ` i ) ) + ( m x. ( D ` i ) ) ) = ( ( A + ( D ` i ) ) + ( 0 x. ( D ` i ) ) ) ) |
53 |
52
|
rspceeqv |
|- ( ( 0 e. ( 0 ... ( K - 1 ) ) /\ ( A + ( D ` i ) ) = ( ( A + ( D ` i ) ) + ( 0 x. ( D ` i ) ) ) ) -> E. m e. ( 0 ... ( K - 1 ) ) ( A + ( D ` i ) ) = ( ( A + ( D ` i ) ) + ( m x. ( D ` i ) ) ) ) |
54 |
41 50 53
|
syl2anc |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> E. m e. ( 0 ... ( K - 1 ) ) ( A + ( D ` i ) ) = ( ( A + ( D ` i ) ) + ( m x. ( D ` i ) ) ) ) |
55 |
2
|
adantr |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> K e. NN ) |
56 |
55
|
nnnn0d |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> K e. NN0 ) |
57 |
|
vdwapval |
|- ( ( K e. NN0 /\ ( A + ( D ` i ) ) e. NN /\ ( D ` i ) e. NN ) -> ( ( A + ( D ` i ) ) e. ( ( A + ( D ` i ) ) ( AP ` K ) ( D ` i ) ) <-> E. m e. ( 0 ... ( K - 1 ) ) ( A + ( D ` i ) ) = ( ( A + ( D ` i ) ) + ( m x. ( D ` i ) ) ) ) ) |
58 |
56 47 42 57
|
syl3anc |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( ( A + ( D ` i ) ) e. ( ( A + ( D ` i ) ) ( AP ` K ) ( D ` i ) ) <-> E. m e. ( 0 ... ( K - 1 ) ) ( A + ( D ` i ) ) = ( ( A + ( D ` i ) ) + ( m x. ( D ` i ) ) ) ) ) |
59 |
54 58
|
mpbird |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( A + ( D ` i ) ) e. ( ( A + ( D ` i ) ) ( AP ` K ) ( D ` i ) ) ) |
60 |
34 59
|
sseldd |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( A + ( D ` i ) ) e. ( 1 ... W ) ) |
61 |
60
|
ralrimiva |
|- ( ph -> A. i e. ( 1 ... M ) ( A + ( D ` i ) ) e. ( 1 ... W ) ) |
62 |
29 61 19
|
rspcdva |
|- ( ph -> ( A + ( D ` 1 ) ) e. ( 1 ... W ) ) |
63 |
|
elfzle2 |
|- ( ( A + ( D ` 1 ) ) e. ( 1 ... W ) -> ( A + ( D ` 1 ) ) <_ W ) |
64 |
62 63
|
syl |
|- ( ph -> ( A + ( D ` 1 ) ) <_ W ) |
65 |
15 22 23 26 64
|
letrd |
|- ( ph -> A <_ W ) |
66 |
5 16
|
eleqtrdi |
|- ( ph -> A e. ( ZZ>= ` 1 ) ) |
67 |
3
|
nnzd |
|- ( ph -> W e. ZZ ) |
68 |
|
elfz5 |
|- ( ( A e. ( ZZ>= ` 1 ) /\ W e. ZZ ) -> ( A e. ( 1 ... W ) <-> A <_ W ) ) |
69 |
66 67 68
|
syl2anc |
|- ( ph -> ( A e. ( 1 ... W ) <-> A <_ W ) ) |
70 |
65 69
|
mpbird |
|- ( ph -> A e. ( 1 ... W ) ) |
71 |
|
eqidd |
|- ( ph -> ( F ` A ) = ( F ` A ) ) |
72 |
|
ffn |
|- ( F : ( 1 ... W ) --> R -> F Fn ( 1 ... W ) ) |
73 |
|
fniniseg |
|- ( F Fn ( 1 ... W ) -> ( A e. ( `' F " { ( F ` A ) } ) <-> ( A e. ( 1 ... W ) /\ ( F ` A ) = ( F ` A ) ) ) ) |
74 |
4 72 73
|
3syl |
|- ( ph -> ( A e. ( `' F " { ( F ` A ) } ) <-> ( A e. ( 1 ... W ) /\ ( F ` A ) = ( F ` A ) ) ) ) |
75 |
70 71 74
|
mpbir2and |
|- ( ph -> A e. ( `' F " { ( F ` A ) } ) ) |
76 |
75
|
snssd |
|- ( ph -> { A } C_ ( `' F " { ( F ` A ) } ) ) |
77 |
|
fveq2 |
|- ( i = I -> ( D ` i ) = ( D ` I ) ) |
78 |
77
|
oveq2d |
|- ( i = I -> ( A + ( D ` i ) ) = ( A + ( D ` I ) ) ) |
79 |
78 77
|
oveq12d |
|- ( i = I -> ( ( A + ( D ` i ) ) ( AP ` K ) ( D ` i ) ) = ( ( A + ( D ` I ) ) ( AP ` K ) ( D ` I ) ) ) |
80 |
78
|
fveq2d |
|- ( i = I -> ( F ` ( A + ( D ` i ) ) ) = ( F ` ( A + ( D ` I ) ) ) ) |
81 |
80
|
sneqd |
|- ( i = I -> { ( F ` ( A + ( D ` i ) ) ) } = { ( F ` ( A + ( D ` I ) ) ) } ) |
82 |
81
|
imaeq2d |
|- ( i = I -> ( `' F " { ( F ` ( A + ( D ` i ) ) ) } ) = ( `' F " { ( F ` ( A + ( D ` I ) ) ) } ) ) |
83 |
79 82
|
sseq12d |
|- ( i = I -> ( ( ( A + ( D ` i ) ) ( AP ` K ) ( D ` i ) ) C_ ( `' F " { ( F ` ( A + ( D ` i ) ) ) } ) <-> ( ( A + ( D ` I ) ) ( AP ` K ) ( D ` I ) ) C_ ( `' F " { ( F ` ( A + ( D ` I ) ) ) } ) ) ) |
84 |
83 8 9
|
rspcdva |
|- ( ph -> ( ( A + ( D ` I ) ) ( AP ` K ) ( D ` I ) ) C_ ( `' F " { ( F ` ( A + ( D ` I ) ) ) } ) ) |
85 |
10
|
sneqd |
|- ( ph -> { ( F ` A ) } = { ( F ` ( A + ( D ` I ) ) ) } ) |
86 |
85
|
imaeq2d |
|- ( ph -> ( `' F " { ( F ` A ) } ) = ( `' F " { ( F ` ( A + ( D ` I ) ) ) } ) ) |
87 |
84 86
|
sseqtrrd |
|- ( ph -> ( ( A + ( D ` I ) ) ( AP ` K ) ( D ` I ) ) C_ ( `' F " { ( F ` A ) } ) ) |
88 |
76 87
|
unssd |
|- ( ph -> ( { A } u. ( ( A + ( D ` I ) ) ( AP ` K ) ( D ` I ) ) ) C_ ( `' F " { ( F ` A ) } ) ) |
89 |
14 88
|
eqsstrd |
|- ( ph -> ( A ( AP ` ( K + 1 ) ) ( D ` I ) ) C_ ( `' F " { ( F ` A ) } ) ) |
90 |
|
oveq1 |
|- ( a = A -> ( a ( AP ` ( K + 1 ) ) d ) = ( A ( AP ` ( K + 1 ) ) d ) ) |
91 |
90
|
sseq1d |
|- ( a = A -> ( ( a ( AP ` ( K + 1 ) ) d ) C_ ( `' F " { ( F ` A ) } ) <-> ( A ( AP ` ( K + 1 ) ) d ) C_ ( `' F " { ( F ` A ) } ) ) ) |
92 |
|
oveq2 |
|- ( d = ( D ` I ) -> ( A ( AP ` ( K + 1 ) ) d ) = ( A ( AP ` ( K + 1 ) ) ( D ` I ) ) ) |
93 |
92
|
sseq1d |
|- ( d = ( D ` I ) -> ( ( A ( AP ` ( K + 1 ) ) d ) C_ ( `' F " { ( F ` A ) } ) <-> ( A ( AP ` ( K + 1 ) ) ( D ` I ) ) C_ ( `' F " { ( F ` A ) } ) ) ) |
94 |
91 93
|
rspc2ev |
|- ( ( A e. NN /\ ( D ` I ) e. NN /\ ( A ( AP ` ( K + 1 ) ) ( D ` I ) ) C_ ( `' F " { ( F ` A ) } ) ) -> E. a e. NN E. d e. NN ( a ( AP ` ( K + 1 ) ) d ) C_ ( `' F " { ( F ` A ) } ) ) |
95 |
5 11 89 94
|
syl3anc |
|- ( ph -> E. a e. NN E. d e. NN ( a ( AP ` ( K + 1 ) ) d ) C_ ( `' F " { ( F ` A ) } ) ) |
96 |
|
fvex |
|- ( F ` A ) e. _V |
97 |
|
sneq |
|- ( c = ( F ` A ) -> { c } = { ( F ` A ) } ) |
98 |
97
|
imaeq2d |
|- ( c = ( F ` A ) -> ( `' F " { c } ) = ( `' F " { ( F ` A ) } ) ) |
99 |
98
|
sseq2d |
|- ( c = ( F ` A ) -> ( ( a ( AP ` ( K + 1 ) ) d ) C_ ( `' F " { c } ) <-> ( a ( AP ` ( K + 1 ) ) d ) C_ ( `' F " { ( F ` A ) } ) ) ) |
100 |
99
|
2rexbidv |
|- ( c = ( F ` A ) -> ( E. a e. NN E. d e. NN ( a ( AP ` ( K + 1 ) ) d ) C_ ( `' F " { c } ) <-> E. a e. NN E. d e. NN ( a ( AP ` ( K + 1 ) ) d ) C_ ( `' F " { ( F ` A ) } ) ) ) |
101 |
96 100
|
spcev |
|- ( E. a e. NN E. d e. NN ( a ( AP ` ( K + 1 ) ) d ) C_ ( `' F " { ( F ` A ) } ) -> E. c E. a e. NN E. d e. NN ( a ( AP ` ( K + 1 ) ) d ) C_ ( `' F " { c } ) ) |
102 |
95 101
|
syl |
|- ( ph -> E. c E. a e. NN E. d e. NN ( a ( AP ` ( K + 1 ) ) d ) C_ ( `' F " { c } ) ) |
103 |
|
ovex |
|- ( 1 ... W ) e. _V |
104 |
|
peano2nn0 |
|- ( K e. NN0 -> ( K + 1 ) e. NN0 ) |
105 |
12 104
|
syl |
|- ( ph -> ( K + 1 ) e. NN0 ) |
106 |
103 105 4
|
vdwmc |
|- ( ph -> ( ( K + 1 ) MonoAP F <-> E. c E. a e. NN E. d e. NN ( a ( AP ` ( K + 1 ) ) d ) C_ ( `' F " { c } ) ) ) |
107 |
102 106
|
mpbird |
|- ( ph -> ( K + 1 ) MonoAP F ) |