| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vdwlem1.r |  |-  ( ph -> R e. Fin ) | 
						
							| 2 |  | vdwlem1.k |  |-  ( ph -> K e. NN ) | 
						
							| 3 |  | vdwlem1.w |  |-  ( ph -> W e. NN ) | 
						
							| 4 |  | vdwlem1.f |  |-  ( ph -> F : ( 1 ... W ) --> R ) | 
						
							| 5 |  | vdwlem1.a |  |-  ( ph -> A e. NN ) | 
						
							| 6 |  | vdwlem1.m |  |-  ( ph -> M e. NN ) | 
						
							| 7 |  | vdwlem1.d |  |-  ( ph -> D : ( 1 ... M ) --> NN ) | 
						
							| 8 |  | vdwlem1.s |  |-  ( ph -> A. i e. ( 1 ... M ) ( ( A + ( D ` i ) ) ( AP ` K ) ( D ` i ) ) C_ ( `' F " { ( F ` ( A + ( D ` i ) ) ) } ) ) | 
						
							| 9 |  | vdwlem1.i |  |-  ( ph -> I e. ( 1 ... M ) ) | 
						
							| 10 |  | vdwlem1.e |  |-  ( ph -> ( F ` A ) = ( F ` ( A + ( D ` I ) ) ) ) | 
						
							| 11 | 7 9 | ffvelcdmd |  |-  ( ph -> ( D ` I ) e. NN ) | 
						
							| 12 | 2 | nnnn0d |  |-  ( ph -> K e. NN0 ) | 
						
							| 13 |  | vdwapun |  |-  ( ( K e. NN0 /\ A e. NN /\ ( D ` I ) e. NN ) -> ( A ( AP ` ( K + 1 ) ) ( D ` I ) ) = ( { A } u. ( ( A + ( D ` I ) ) ( AP ` K ) ( D ` I ) ) ) ) | 
						
							| 14 | 12 5 11 13 | syl3anc |  |-  ( ph -> ( A ( AP ` ( K + 1 ) ) ( D ` I ) ) = ( { A } u. ( ( A + ( D ` I ) ) ( AP ` K ) ( D ` I ) ) ) ) | 
						
							| 15 | 5 | nnred |  |-  ( ph -> A e. RR ) | 
						
							| 16 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 17 | 6 16 | eleqtrdi |  |-  ( ph -> M e. ( ZZ>= ` 1 ) ) | 
						
							| 18 |  | eluzfz1 |  |-  ( M e. ( ZZ>= ` 1 ) -> 1 e. ( 1 ... M ) ) | 
						
							| 19 | 17 18 | syl |  |-  ( ph -> 1 e. ( 1 ... M ) ) | 
						
							| 20 | 7 19 | ffvelcdmd |  |-  ( ph -> ( D ` 1 ) e. NN ) | 
						
							| 21 | 5 20 | nnaddcld |  |-  ( ph -> ( A + ( D ` 1 ) ) e. NN ) | 
						
							| 22 | 21 | nnred |  |-  ( ph -> ( A + ( D ` 1 ) ) e. RR ) | 
						
							| 23 | 3 | nnred |  |-  ( ph -> W e. RR ) | 
						
							| 24 | 20 | nnrpd |  |-  ( ph -> ( D ` 1 ) e. RR+ ) | 
						
							| 25 | 15 24 | ltaddrpd |  |-  ( ph -> A < ( A + ( D ` 1 ) ) ) | 
						
							| 26 | 15 22 25 | ltled |  |-  ( ph -> A <_ ( A + ( D ` 1 ) ) ) | 
						
							| 27 |  | fveq2 |  |-  ( i = 1 -> ( D ` i ) = ( D ` 1 ) ) | 
						
							| 28 | 27 | oveq2d |  |-  ( i = 1 -> ( A + ( D ` i ) ) = ( A + ( D ` 1 ) ) ) | 
						
							| 29 | 28 | eleq1d |  |-  ( i = 1 -> ( ( A + ( D ` i ) ) e. ( 1 ... W ) <-> ( A + ( D ` 1 ) ) e. ( 1 ... W ) ) ) | 
						
							| 30 | 8 | r19.21bi |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> ( ( A + ( D ` i ) ) ( AP ` K ) ( D ` i ) ) C_ ( `' F " { ( F ` ( A + ( D ` i ) ) ) } ) ) | 
						
							| 31 |  | cnvimass |  |-  ( `' F " { ( F ` ( A + ( D ` i ) ) ) } ) C_ dom F | 
						
							| 32 | 31 4 | fssdm |  |-  ( ph -> ( `' F " { ( F ` ( A + ( D ` i ) ) ) } ) C_ ( 1 ... W ) ) | 
						
							| 33 | 32 | adantr |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> ( `' F " { ( F ` ( A + ( D ` i ) ) ) } ) C_ ( 1 ... W ) ) | 
						
							| 34 | 30 33 | sstrd |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> ( ( A + ( D ` i ) ) ( AP ` K ) ( D ` i ) ) C_ ( 1 ... W ) ) | 
						
							| 35 |  | nnm1nn0 |  |-  ( K e. NN -> ( K - 1 ) e. NN0 ) | 
						
							| 36 | 2 35 | syl |  |-  ( ph -> ( K - 1 ) e. NN0 ) | 
						
							| 37 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 38 | 36 37 | eleqtrdi |  |-  ( ph -> ( K - 1 ) e. ( ZZ>= ` 0 ) ) | 
						
							| 39 |  | eluzfz1 |  |-  ( ( K - 1 ) e. ( ZZ>= ` 0 ) -> 0 e. ( 0 ... ( K - 1 ) ) ) | 
						
							| 40 | 38 39 | syl |  |-  ( ph -> 0 e. ( 0 ... ( K - 1 ) ) ) | 
						
							| 41 | 40 | adantr |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> 0 e. ( 0 ... ( K - 1 ) ) ) | 
						
							| 42 | 7 | ffvelcdmda |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> ( D ` i ) e. NN ) | 
						
							| 43 | 42 | nncnd |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> ( D ` i ) e. CC ) | 
						
							| 44 | 43 | mul02d |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> ( 0 x. ( D ` i ) ) = 0 ) | 
						
							| 45 | 44 | oveq2d |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> ( ( A + ( D ` i ) ) + ( 0 x. ( D ` i ) ) ) = ( ( A + ( D ` i ) ) + 0 ) ) | 
						
							| 46 | 5 | adantr |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> A e. NN ) | 
						
							| 47 | 46 42 | nnaddcld |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> ( A + ( D ` i ) ) e. NN ) | 
						
							| 48 | 47 | nncnd |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> ( A + ( D ` i ) ) e. CC ) | 
						
							| 49 | 48 | addridd |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> ( ( A + ( D ` i ) ) + 0 ) = ( A + ( D ` i ) ) ) | 
						
							| 50 | 45 49 | eqtr2d |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> ( A + ( D ` i ) ) = ( ( A + ( D ` i ) ) + ( 0 x. ( D ` i ) ) ) ) | 
						
							| 51 |  | oveq1 |  |-  ( m = 0 -> ( m x. ( D ` i ) ) = ( 0 x. ( D ` i ) ) ) | 
						
							| 52 | 51 | oveq2d |  |-  ( m = 0 -> ( ( A + ( D ` i ) ) + ( m x. ( D ` i ) ) ) = ( ( A + ( D ` i ) ) + ( 0 x. ( D ` i ) ) ) ) | 
						
							| 53 | 52 | rspceeqv |  |-  ( ( 0 e. ( 0 ... ( K - 1 ) ) /\ ( A + ( D ` i ) ) = ( ( A + ( D ` i ) ) + ( 0 x. ( D ` i ) ) ) ) -> E. m e. ( 0 ... ( K - 1 ) ) ( A + ( D ` i ) ) = ( ( A + ( D ` i ) ) + ( m x. ( D ` i ) ) ) ) | 
						
							| 54 | 41 50 53 | syl2anc |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> E. m e. ( 0 ... ( K - 1 ) ) ( A + ( D ` i ) ) = ( ( A + ( D ` i ) ) + ( m x. ( D ` i ) ) ) ) | 
						
							| 55 | 2 | adantr |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> K e. NN ) | 
						
							| 56 | 55 | nnnn0d |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> K e. NN0 ) | 
						
							| 57 |  | vdwapval |  |-  ( ( K e. NN0 /\ ( A + ( D ` i ) ) e. NN /\ ( D ` i ) e. NN ) -> ( ( A + ( D ` i ) ) e. ( ( A + ( D ` i ) ) ( AP ` K ) ( D ` i ) ) <-> E. m e. ( 0 ... ( K - 1 ) ) ( A + ( D ` i ) ) = ( ( A + ( D ` i ) ) + ( m x. ( D ` i ) ) ) ) ) | 
						
							| 58 | 56 47 42 57 | syl3anc |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> ( ( A + ( D ` i ) ) e. ( ( A + ( D ` i ) ) ( AP ` K ) ( D ` i ) ) <-> E. m e. ( 0 ... ( K - 1 ) ) ( A + ( D ` i ) ) = ( ( A + ( D ` i ) ) + ( m x. ( D ` i ) ) ) ) ) | 
						
							| 59 | 54 58 | mpbird |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> ( A + ( D ` i ) ) e. ( ( A + ( D ` i ) ) ( AP ` K ) ( D ` i ) ) ) | 
						
							| 60 | 34 59 | sseldd |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> ( A + ( D ` i ) ) e. ( 1 ... W ) ) | 
						
							| 61 | 60 | ralrimiva |  |-  ( ph -> A. i e. ( 1 ... M ) ( A + ( D ` i ) ) e. ( 1 ... W ) ) | 
						
							| 62 | 29 61 19 | rspcdva |  |-  ( ph -> ( A + ( D ` 1 ) ) e. ( 1 ... W ) ) | 
						
							| 63 |  | elfzle2 |  |-  ( ( A + ( D ` 1 ) ) e. ( 1 ... W ) -> ( A + ( D ` 1 ) ) <_ W ) | 
						
							| 64 | 62 63 | syl |  |-  ( ph -> ( A + ( D ` 1 ) ) <_ W ) | 
						
							| 65 | 15 22 23 26 64 | letrd |  |-  ( ph -> A <_ W ) | 
						
							| 66 | 5 16 | eleqtrdi |  |-  ( ph -> A e. ( ZZ>= ` 1 ) ) | 
						
							| 67 | 3 | nnzd |  |-  ( ph -> W e. ZZ ) | 
						
							| 68 |  | elfz5 |  |-  ( ( A e. ( ZZ>= ` 1 ) /\ W e. ZZ ) -> ( A e. ( 1 ... W ) <-> A <_ W ) ) | 
						
							| 69 | 66 67 68 | syl2anc |  |-  ( ph -> ( A e. ( 1 ... W ) <-> A <_ W ) ) | 
						
							| 70 | 65 69 | mpbird |  |-  ( ph -> A e. ( 1 ... W ) ) | 
						
							| 71 |  | eqidd |  |-  ( ph -> ( F ` A ) = ( F ` A ) ) | 
						
							| 72 |  | ffn |  |-  ( F : ( 1 ... W ) --> R -> F Fn ( 1 ... W ) ) | 
						
							| 73 |  | fniniseg |  |-  ( F Fn ( 1 ... W ) -> ( A e. ( `' F " { ( F ` A ) } ) <-> ( A e. ( 1 ... W ) /\ ( F ` A ) = ( F ` A ) ) ) ) | 
						
							| 74 | 4 72 73 | 3syl |  |-  ( ph -> ( A e. ( `' F " { ( F ` A ) } ) <-> ( A e. ( 1 ... W ) /\ ( F ` A ) = ( F ` A ) ) ) ) | 
						
							| 75 | 70 71 74 | mpbir2and |  |-  ( ph -> A e. ( `' F " { ( F ` A ) } ) ) | 
						
							| 76 | 75 | snssd |  |-  ( ph -> { A } C_ ( `' F " { ( F ` A ) } ) ) | 
						
							| 77 |  | fveq2 |  |-  ( i = I -> ( D ` i ) = ( D ` I ) ) | 
						
							| 78 | 77 | oveq2d |  |-  ( i = I -> ( A + ( D ` i ) ) = ( A + ( D ` I ) ) ) | 
						
							| 79 | 78 77 | oveq12d |  |-  ( i = I -> ( ( A + ( D ` i ) ) ( AP ` K ) ( D ` i ) ) = ( ( A + ( D ` I ) ) ( AP ` K ) ( D ` I ) ) ) | 
						
							| 80 | 78 | fveq2d |  |-  ( i = I -> ( F ` ( A + ( D ` i ) ) ) = ( F ` ( A + ( D ` I ) ) ) ) | 
						
							| 81 | 80 | sneqd |  |-  ( i = I -> { ( F ` ( A + ( D ` i ) ) ) } = { ( F ` ( A + ( D ` I ) ) ) } ) | 
						
							| 82 | 81 | imaeq2d |  |-  ( i = I -> ( `' F " { ( F ` ( A + ( D ` i ) ) ) } ) = ( `' F " { ( F ` ( A + ( D ` I ) ) ) } ) ) | 
						
							| 83 | 79 82 | sseq12d |  |-  ( i = I -> ( ( ( A + ( D ` i ) ) ( AP ` K ) ( D ` i ) ) C_ ( `' F " { ( F ` ( A + ( D ` i ) ) ) } ) <-> ( ( A + ( D ` I ) ) ( AP ` K ) ( D ` I ) ) C_ ( `' F " { ( F ` ( A + ( D ` I ) ) ) } ) ) ) | 
						
							| 84 | 83 8 9 | rspcdva |  |-  ( ph -> ( ( A + ( D ` I ) ) ( AP ` K ) ( D ` I ) ) C_ ( `' F " { ( F ` ( A + ( D ` I ) ) ) } ) ) | 
						
							| 85 | 10 | sneqd |  |-  ( ph -> { ( F ` A ) } = { ( F ` ( A + ( D ` I ) ) ) } ) | 
						
							| 86 | 85 | imaeq2d |  |-  ( ph -> ( `' F " { ( F ` A ) } ) = ( `' F " { ( F ` ( A + ( D ` I ) ) ) } ) ) | 
						
							| 87 | 84 86 | sseqtrrd |  |-  ( ph -> ( ( A + ( D ` I ) ) ( AP ` K ) ( D ` I ) ) C_ ( `' F " { ( F ` A ) } ) ) | 
						
							| 88 | 76 87 | unssd |  |-  ( ph -> ( { A } u. ( ( A + ( D ` I ) ) ( AP ` K ) ( D ` I ) ) ) C_ ( `' F " { ( F ` A ) } ) ) | 
						
							| 89 | 14 88 | eqsstrd |  |-  ( ph -> ( A ( AP ` ( K + 1 ) ) ( D ` I ) ) C_ ( `' F " { ( F ` A ) } ) ) | 
						
							| 90 |  | oveq1 |  |-  ( a = A -> ( a ( AP ` ( K + 1 ) ) d ) = ( A ( AP ` ( K + 1 ) ) d ) ) | 
						
							| 91 | 90 | sseq1d |  |-  ( a = A -> ( ( a ( AP ` ( K + 1 ) ) d ) C_ ( `' F " { ( F ` A ) } ) <-> ( A ( AP ` ( K + 1 ) ) d ) C_ ( `' F " { ( F ` A ) } ) ) ) | 
						
							| 92 |  | oveq2 |  |-  ( d = ( D ` I ) -> ( A ( AP ` ( K + 1 ) ) d ) = ( A ( AP ` ( K + 1 ) ) ( D ` I ) ) ) | 
						
							| 93 | 92 | sseq1d |  |-  ( d = ( D ` I ) -> ( ( A ( AP ` ( K + 1 ) ) d ) C_ ( `' F " { ( F ` A ) } ) <-> ( A ( AP ` ( K + 1 ) ) ( D ` I ) ) C_ ( `' F " { ( F ` A ) } ) ) ) | 
						
							| 94 | 91 93 | rspc2ev |  |-  ( ( A e. NN /\ ( D ` I ) e. NN /\ ( A ( AP ` ( K + 1 ) ) ( D ` I ) ) C_ ( `' F " { ( F ` A ) } ) ) -> E. a e. NN E. d e. NN ( a ( AP ` ( K + 1 ) ) d ) C_ ( `' F " { ( F ` A ) } ) ) | 
						
							| 95 | 5 11 89 94 | syl3anc |  |-  ( ph -> E. a e. NN E. d e. NN ( a ( AP ` ( K + 1 ) ) d ) C_ ( `' F " { ( F ` A ) } ) ) | 
						
							| 96 |  | fvex |  |-  ( F ` A ) e. _V | 
						
							| 97 |  | sneq |  |-  ( c = ( F ` A ) -> { c } = { ( F ` A ) } ) | 
						
							| 98 | 97 | imaeq2d |  |-  ( c = ( F ` A ) -> ( `' F " { c } ) = ( `' F " { ( F ` A ) } ) ) | 
						
							| 99 | 98 | sseq2d |  |-  ( c = ( F ` A ) -> ( ( a ( AP ` ( K + 1 ) ) d ) C_ ( `' F " { c } ) <-> ( a ( AP ` ( K + 1 ) ) d ) C_ ( `' F " { ( F ` A ) } ) ) ) | 
						
							| 100 | 99 | 2rexbidv |  |-  ( c = ( F ` A ) -> ( E. a e. NN E. d e. NN ( a ( AP ` ( K + 1 ) ) d ) C_ ( `' F " { c } ) <-> E. a e. NN E. d e. NN ( a ( AP ` ( K + 1 ) ) d ) C_ ( `' F " { ( F ` A ) } ) ) ) | 
						
							| 101 | 96 100 | spcev |  |-  ( E. a e. NN E. d e. NN ( a ( AP ` ( K + 1 ) ) d ) C_ ( `' F " { ( F ` A ) } ) -> E. c E. a e. NN E. d e. NN ( a ( AP ` ( K + 1 ) ) d ) C_ ( `' F " { c } ) ) | 
						
							| 102 | 95 101 | syl |  |-  ( ph -> E. c E. a e. NN E. d e. NN ( a ( AP ` ( K + 1 ) ) d ) C_ ( `' F " { c } ) ) | 
						
							| 103 |  | ovex |  |-  ( 1 ... W ) e. _V | 
						
							| 104 |  | peano2nn0 |  |-  ( K e. NN0 -> ( K + 1 ) e. NN0 ) | 
						
							| 105 | 12 104 | syl |  |-  ( ph -> ( K + 1 ) e. NN0 ) | 
						
							| 106 | 103 105 4 | vdwmc |  |-  ( ph -> ( ( K + 1 ) MonoAP F <-> E. c E. a e. NN E. d e. NN ( a ( AP ` ( K + 1 ) ) d ) C_ ( `' F " { c } ) ) ) | 
						
							| 107 | 102 106 | mpbird |  |-  ( ph -> ( K + 1 ) MonoAP F ) |