| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vdwlem1.r |
|- ( ph -> R e. Fin ) |
| 2 |
|
vdwlem1.k |
|- ( ph -> K e. NN ) |
| 3 |
|
vdwlem1.w |
|- ( ph -> W e. NN ) |
| 4 |
|
vdwlem1.f |
|- ( ph -> F : ( 1 ... W ) --> R ) |
| 5 |
|
vdwlem1.a |
|- ( ph -> A e. NN ) |
| 6 |
|
vdwlem1.m |
|- ( ph -> M e. NN ) |
| 7 |
|
vdwlem1.d |
|- ( ph -> D : ( 1 ... M ) --> NN ) |
| 8 |
|
vdwlem1.s |
|- ( ph -> A. i e. ( 1 ... M ) ( ( A + ( D ` i ) ) ( AP ` K ) ( D ` i ) ) C_ ( `' F " { ( F ` ( A + ( D ` i ) ) ) } ) ) |
| 9 |
|
vdwlem1.i |
|- ( ph -> I e. ( 1 ... M ) ) |
| 10 |
|
vdwlem1.e |
|- ( ph -> ( F ` A ) = ( F ` ( A + ( D ` I ) ) ) ) |
| 11 |
7 9
|
ffvelcdmd |
|- ( ph -> ( D ` I ) e. NN ) |
| 12 |
2
|
nnnn0d |
|- ( ph -> K e. NN0 ) |
| 13 |
|
vdwapun |
|- ( ( K e. NN0 /\ A e. NN /\ ( D ` I ) e. NN ) -> ( A ( AP ` ( K + 1 ) ) ( D ` I ) ) = ( { A } u. ( ( A + ( D ` I ) ) ( AP ` K ) ( D ` I ) ) ) ) |
| 14 |
12 5 11 13
|
syl3anc |
|- ( ph -> ( A ( AP ` ( K + 1 ) ) ( D ` I ) ) = ( { A } u. ( ( A + ( D ` I ) ) ( AP ` K ) ( D ` I ) ) ) ) |
| 15 |
5
|
nnred |
|- ( ph -> A e. RR ) |
| 16 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 17 |
6 16
|
eleqtrdi |
|- ( ph -> M e. ( ZZ>= ` 1 ) ) |
| 18 |
|
eluzfz1 |
|- ( M e. ( ZZ>= ` 1 ) -> 1 e. ( 1 ... M ) ) |
| 19 |
17 18
|
syl |
|- ( ph -> 1 e. ( 1 ... M ) ) |
| 20 |
7 19
|
ffvelcdmd |
|- ( ph -> ( D ` 1 ) e. NN ) |
| 21 |
5 20
|
nnaddcld |
|- ( ph -> ( A + ( D ` 1 ) ) e. NN ) |
| 22 |
21
|
nnred |
|- ( ph -> ( A + ( D ` 1 ) ) e. RR ) |
| 23 |
3
|
nnred |
|- ( ph -> W e. RR ) |
| 24 |
20
|
nnrpd |
|- ( ph -> ( D ` 1 ) e. RR+ ) |
| 25 |
15 24
|
ltaddrpd |
|- ( ph -> A < ( A + ( D ` 1 ) ) ) |
| 26 |
15 22 25
|
ltled |
|- ( ph -> A <_ ( A + ( D ` 1 ) ) ) |
| 27 |
|
fveq2 |
|- ( i = 1 -> ( D ` i ) = ( D ` 1 ) ) |
| 28 |
27
|
oveq2d |
|- ( i = 1 -> ( A + ( D ` i ) ) = ( A + ( D ` 1 ) ) ) |
| 29 |
28
|
eleq1d |
|- ( i = 1 -> ( ( A + ( D ` i ) ) e. ( 1 ... W ) <-> ( A + ( D ` 1 ) ) e. ( 1 ... W ) ) ) |
| 30 |
8
|
r19.21bi |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( ( A + ( D ` i ) ) ( AP ` K ) ( D ` i ) ) C_ ( `' F " { ( F ` ( A + ( D ` i ) ) ) } ) ) |
| 31 |
|
cnvimass |
|- ( `' F " { ( F ` ( A + ( D ` i ) ) ) } ) C_ dom F |
| 32 |
31 4
|
fssdm |
|- ( ph -> ( `' F " { ( F ` ( A + ( D ` i ) ) ) } ) C_ ( 1 ... W ) ) |
| 33 |
32
|
adantr |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( `' F " { ( F ` ( A + ( D ` i ) ) ) } ) C_ ( 1 ... W ) ) |
| 34 |
30 33
|
sstrd |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( ( A + ( D ` i ) ) ( AP ` K ) ( D ` i ) ) C_ ( 1 ... W ) ) |
| 35 |
|
nnm1nn0 |
|- ( K e. NN -> ( K - 1 ) e. NN0 ) |
| 36 |
2 35
|
syl |
|- ( ph -> ( K - 1 ) e. NN0 ) |
| 37 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 38 |
36 37
|
eleqtrdi |
|- ( ph -> ( K - 1 ) e. ( ZZ>= ` 0 ) ) |
| 39 |
|
eluzfz1 |
|- ( ( K - 1 ) e. ( ZZ>= ` 0 ) -> 0 e. ( 0 ... ( K - 1 ) ) ) |
| 40 |
38 39
|
syl |
|- ( ph -> 0 e. ( 0 ... ( K - 1 ) ) ) |
| 41 |
40
|
adantr |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> 0 e. ( 0 ... ( K - 1 ) ) ) |
| 42 |
7
|
ffvelcdmda |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( D ` i ) e. NN ) |
| 43 |
42
|
nncnd |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( D ` i ) e. CC ) |
| 44 |
43
|
mul02d |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( 0 x. ( D ` i ) ) = 0 ) |
| 45 |
44
|
oveq2d |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( ( A + ( D ` i ) ) + ( 0 x. ( D ` i ) ) ) = ( ( A + ( D ` i ) ) + 0 ) ) |
| 46 |
5
|
adantr |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> A e. NN ) |
| 47 |
46 42
|
nnaddcld |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( A + ( D ` i ) ) e. NN ) |
| 48 |
47
|
nncnd |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( A + ( D ` i ) ) e. CC ) |
| 49 |
48
|
addridd |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( ( A + ( D ` i ) ) + 0 ) = ( A + ( D ` i ) ) ) |
| 50 |
45 49
|
eqtr2d |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( A + ( D ` i ) ) = ( ( A + ( D ` i ) ) + ( 0 x. ( D ` i ) ) ) ) |
| 51 |
|
oveq1 |
|- ( m = 0 -> ( m x. ( D ` i ) ) = ( 0 x. ( D ` i ) ) ) |
| 52 |
51
|
oveq2d |
|- ( m = 0 -> ( ( A + ( D ` i ) ) + ( m x. ( D ` i ) ) ) = ( ( A + ( D ` i ) ) + ( 0 x. ( D ` i ) ) ) ) |
| 53 |
52
|
rspceeqv |
|- ( ( 0 e. ( 0 ... ( K - 1 ) ) /\ ( A + ( D ` i ) ) = ( ( A + ( D ` i ) ) + ( 0 x. ( D ` i ) ) ) ) -> E. m e. ( 0 ... ( K - 1 ) ) ( A + ( D ` i ) ) = ( ( A + ( D ` i ) ) + ( m x. ( D ` i ) ) ) ) |
| 54 |
41 50 53
|
syl2anc |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> E. m e. ( 0 ... ( K - 1 ) ) ( A + ( D ` i ) ) = ( ( A + ( D ` i ) ) + ( m x. ( D ` i ) ) ) ) |
| 55 |
2
|
adantr |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> K e. NN ) |
| 56 |
55
|
nnnn0d |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> K e. NN0 ) |
| 57 |
|
vdwapval |
|- ( ( K e. NN0 /\ ( A + ( D ` i ) ) e. NN /\ ( D ` i ) e. NN ) -> ( ( A + ( D ` i ) ) e. ( ( A + ( D ` i ) ) ( AP ` K ) ( D ` i ) ) <-> E. m e. ( 0 ... ( K - 1 ) ) ( A + ( D ` i ) ) = ( ( A + ( D ` i ) ) + ( m x. ( D ` i ) ) ) ) ) |
| 58 |
56 47 42 57
|
syl3anc |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( ( A + ( D ` i ) ) e. ( ( A + ( D ` i ) ) ( AP ` K ) ( D ` i ) ) <-> E. m e. ( 0 ... ( K - 1 ) ) ( A + ( D ` i ) ) = ( ( A + ( D ` i ) ) + ( m x. ( D ` i ) ) ) ) ) |
| 59 |
54 58
|
mpbird |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( A + ( D ` i ) ) e. ( ( A + ( D ` i ) ) ( AP ` K ) ( D ` i ) ) ) |
| 60 |
34 59
|
sseldd |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( A + ( D ` i ) ) e. ( 1 ... W ) ) |
| 61 |
60
|
ralrimiva |
|- ( ph -> A. i e. ( 1 ... M ) ( A + ( D ` i ) ) e. ( 1 ... W ) ) |
| 62 |
29 61 19
|
rspcdva |
|- ( ph -> ( A + ( D ` 1 ) ) e. ( 1 ... W ) ) |
| 63 |
|
elfzle2 |
|- ( ( A + ( D ` 1 ) ) e. ( 1 ... W ) -> ( A + ( D ` 1 ) ) <_ W ) |
| 64 |
62 63
|
syl |
|- ( ph -> ( A + ( D ` 1 ) ) <_ W ) |
| 65 |
15 22 23 26 64
|
letrd |
|- ( ph -> A <_ W ) |
| 66 |
5 16
|
eleqtrdi |
|- ( ph -> A e. ( ZZ>= ` 1 ) ) |
| 67 |
3
|
nnzd |
|- ( ph -> W e. ZZ ) |
| 68 |
|
elfz5 |
|- ( ( A e. ( ZZ>= ` 1 ) /\ W e. ZZ ) -> ( A e. ( 1 ... W ) <-> A <_ W ) ) |
| 69 |
66 67 68
|
syl2anc |
|- ( ph -> ( A e. ( 1 ... W ) <-> A <_ W ) ) |
| 70 |
65 69
|
mpbird |
|- ( ph -> A e. ( 1 ... W ) ) |
| 71 |
|
eqidd |
|- ( ph -> ( F ` A ) = ( F ` A ) ) |
| 72 |
|
ffn |
|- ( F : ( 1 ... W ) --> R -> F Fn ( 1 ... W ) ) |
| 73 |
|
fniniseg |
|- ( F Fn ( 1 ... W ) -> ( A e. ( `' F " { ( F ` A ) } ) <-> ( A e. ( 1 ... W ) /\ ( F ` A ) = ( F ` A ) ) ) ) |
| 74 |
4 72 73
|
3syl |
|- ( ph -> ( A e. ( `' F " { ( F ` A ) } ) <-> ( A e. ( 1 ... W ) /\ ( F ` A ) = ( F ` A ) ) ) ) |
| 75 |
70 71 74
|
mpbir2and |
|- ( ph -> A e. ( `' F " { ( F ` A ) } ) ) |
| 76 |
75
|
snssd |
|- ( ph -> { A } C_ ( `' F " { ( F ` A ) } ) ) |
| 77 |
|
fveq2 |
|- ( i = I -> ( D ` i ) = ( D ` I ) ) |
| 78 |
77
|
oveq2d |
|- ( i = I -> ( A + ( D ` i ) ) = ( A + ( D ` I ) ) ) |
| 79 |
78 77
|
oveq12d |
|- ( i = I -> ( ( A + ( D ` i ) ) ( AP ` K ) ( D ` i ) ) = ( ( A + ( D ` I ) ) ( AP ` K ) ( D ` I ) ) ) |
| 80 |
78
|
fveq2d |
|- ( i = I -> ( F ` ( A + ( D ` i ) ) ) = ( F ` ( A + ( D ` I ) ) ) ) |
| 81 |
80
|
sneqd |
|- ( i = I -> { ( F ` ( A + ( D ` i ) ) ) } = { ( F ` ( A + ( D ` I ) ) ) } ) |
| 82 |
81
|
imaeq2d |
|- ( i = I -> ( `' F " { ( F ` ( A + ( D ` i ) ) ) } ) = ( `' F " { ( F ` ( A + ( D ` I ) ) ) } ) ) |
| 83 |
79 82
|
sseq12d |
|- ( i = I -> ( ( ( A + ( D ` i ) ) ( AP ` K ) ( D ` i ) ) C_ ( `' F " { ( F ` ( A + ( D ` i ) ) ) } ) <-> ( ( A + ( D ` I ) ) ( AP ` K ) ( D ` I ) ) C_ ( `' F " { ( F ` ( A + ( D ` I ) ) ) } ) ) ) |
| 84 |
83 8 9
|
rspcdva |
|- ( ph -> ( ( A + ( D ` I ) ) ( AP ` K ) ( D ` I ) ) C_ ( `' F " { ( F ` ( A + ( D ` I ) ) ) } ) ) |
| 85 |
10
|
sneqd |
|- ( ph -> { ( F ` A ) } = { ( F ` ( A + ( D ` I ) ) ) } ) |
| 86 |
85
|
imaeq2d |
|- ( ph -> ( `' F " { ( F ` A ) } ) = ( `' F " { ( F ` ( A + ( D ` I ) ) ) } ) ) |
| 87 |
84 86
|
sseqtrrd |
|- ( ph -> ( ( A + ( D ` I ) ) ( AP ` K ) ( D ` I ) ) C_ ( `' F " { ( F ` A ) } ) ) |
| 88 |
76 87
|
unssd |
|- ( ph -> ( { A } u. ( ( A + ( D ` I ) ) ( AP ` K ) ( D ` I ) ) ) C_ ( `' F " { ( F ` A ) } ) ) |
| 89 |
14 88
|
eqsstrd |
|- ( ph -> ( A ( AP ` ( K + 1 ) ) ( D ` I ) ) C_ ( `' F " { ( F ` A ) } ) ) |
| 90 |
|
oveq1 |
|- ( a = A -> ( a ( AP ` ( K + 1 ) ) d ) = ( A ( AP ` ( K + 1 ) ) d ) ) |
| 91 |
90
|
sseq1d |
|- ( a = A -> ( ( a ( AP ` ( K + 1 ) ) d ) C_ ( `' F " { ( F ` A ) } ) <-> ( A ( AP ` ( K + 1 ) ) d ) C_ ( `' F " { ( F ` A ) } ) ) ) |
| 92 |
|
oveq2 |
|- ( d = ( D ` I ) -> ( A ( AP ` ( K + 1 ) ) d ) = ( A ( AP ` ( K + 1 ) ) ( D ` I ) ) ) |
| 93 |
92
|
sseq1d |
|- ( d = ( D ` I ) -> ( ( A ( AP ` ( K + 1 ) ) d ) C_ ( `' F " { ( F ` A ) } ) <-> ( A ( AP ` ( K + 1 ) ) ( D ` I ) ) C_ ( `' F " { ( F ` A ) } ) ) ) |
| 94 |
91 93
|
rspc2ev |
|- ( ( A e. NN /\ ( D ` I ) e. NN /\ ( A ( AP ` ( K + 1 ) ) ( D ` I ) ) C_ ( `' F " { ( F ` A ) } ) ) -> E. a e. NN E. d e. NN ( a ( AP ` ( K + 1 ) ) d ) C_ ( `' F " { ( F ` A ) } ) ) |
| 95 |
5 11 89 94
|
syl3anc |
|- ( ph -> E. a e. NN E. d e. NN ( a ( AP ` ( K + 1 ) ) d ) C_ ( `' F " { ( F ` A ) } ) ) |
| 96 |
|
fvex |
|- ( F ` A ) e. _V |
| 97 |
|
sneq |
|- ( c = ( F ` A ) -> { c } = { ( F ` A ) } ) |
| 98 |
97
|
imaeq2d |
|- ( c = ( F ` A ) -> ( `' F " { c } ) = ( `' F " { ( F ` A ) } ) ) |
| 99 |
98
|
sseq2d |
|- ( c = ( F ` A ) -> ( ( a ( AP ` ( K + 1 ) ) d ) C_ ( `' F " { c } ) <-> ( a ( AP ` ( K + 1 ) ) d ) C_ ( `' F " { ( F ` A ) } ) ) ) |
| 100 |
99
|
2rexbidv |
|- ( c = ( F ` A ) -> ( E. a e. NN E. d e. NN ( a ( AP ` ( K + 1 ) ) d ) C_ ( `' F " { c } ) <-> E. a e. NN E. d e. NN ( a ( AP ` ( K + 1 ) ) d ) C_ ( `' F " { ( F ` A ) } ) ) ) |
| 101 |
96 100
|
spcev |
|- ( E. a e. NN E. d e. NN ( a ( AP ` ( K + 1 ) ) d ) C_ ( `' F " { ( F ` A ) } ) -> E. c E. a e. NN E. d e. NN ( a ( AP ` ( K + 1 ) ) d ) C_ ( `' F " { c } ) ) |
| 102 |
95 101
|
syl |
|- ( ph -> E. c E. a e. NN E. d e. NN ( a ( AP ` ( K + 1 ) ) d ) C_ ( `' F " { c } ) ) |
| 103 |
|
ovex |
|- ( 1 ... W ) e. _V |
| 104 |
|
peano2nn0 |
|- ( K e. NN0 -> ( K + 1 ) e. NN0 ) |
| 105 |
12 104
|
syl |
|- ( ph -> ( K + 1 ) e. NN0 ) |
| 106 |
103 105 4
|
vdwmc |
|- ( ph -> ( ( K + 1 ) MonoAP F <-> E. c E. a e. NN E. d e. NN ( a ( AP ` ( K + 1 ) ) d ) C_ ( `' F " { c } ) ) ) |
| 107 |
102 106
|
mpbird |
|- ( ph -> ( K + 1 ) MonoAP F ) |