Step |
Hyp |
Ref |
Expression |
1 |
|
peano2nn0 |
|- ( K e. NN0 -> ( K + 1 ) e. NN0 ) |
2 |
|
vdwapval |
|- ( ( ( K + 1 ) e. NN0 /\ A e. NN /\ D e. NN ) -> ( x e. ( A ( AP ` ( K + 1 ) ) D ) <-> E. n e. ( 0 ... ( ( K + 1 ) - 1 ) ) x = ( A + ( n x. D ) ) ) ) |
3 |
1 2
|
syl3an1 |
|- ( ( K e. NN0 /\ A e. NN /\ D e. NN ) -> ( x e. ( A ( AP ` ( K + 1 ) ) D ) <-> E. n e. ( 0 ... ( ( K + 1 ) - 1 ) ) x = ( A + ( n x. D ) ) ) ) |
4 |
|
simp1 |
|- ( ( K e. NN0 /\ A e. NN /\ D e. NN ) -> K e. NN0 ) |
5 |
4
|
nn0cnd |
|- ( ( K e. NN0 /\ A e. NN /\ D e. NN ) -> K e. CC ) |
6 |
|
ax-1cn |
|- 1 e. CC |
7 |
|
pncan |
|- ( ( K e. CC /\ 1 e. CC ) -> ( ( K + 1 ) - 1 ) = K ) |
8 |
5 6 7
|
sylancl |
|- ( ( K e. NN0 /\ A e. NN /\ D e. NN ) -> ( ( K + 1 ) - 1 ) = K ) |
9 |
8
|
oveq2d |
|- ( ( K e. NN0 /\ A e. NN /\ D e. NN ) -> ( 0 ... ( ( K + 1 ) - 1 ) ) = ( 0 ... K ) ) |
10 |
9
|
eleq2d |
|- ( ( K e. NN0 /\ A e. NN /\ D e. NN ) -> ( n e. ( 0 ... ( ( K + 1 ) - 1 ) ) <-> n e. ( 0 ... K ) ) ) |
11 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
12 |
4 11
|
eleqtrdi |
|- ( ( K e. NN0 /\ A e. NN /\ D e. NN ) -> K e. ( ZZ>= ` 0 ) ) |
13 |
|
elfzp12 |
|- ( K e. ( ZZ>= ` 0 ) -> ( n e. ( 0 ... K ) <-> ( n = 0 \/ n e. ( ( 0 + 1 ) ... K ) ) ) ) |
14 |
12 13
|
syl |
|- ( ( K e. NN0 /\ A e. NN /\ D e. NN ) -> ( n e. ( 0 ... K ) <-> ( n = 0 \/ n e. ( ( 0 + 1 ) ... K ) ) ) ) |
15 |
10 14
|
bitrd |
|- ( ( K e. NN0 /\ A e. NN /\ D e. NN ) -> ( n e. ( 0 ... ( ( K + 1 ) - 1 ) ) <-> ( n = 0 \/ n e. ( ( 0 + 1 ) ... K ) ) ) ) |
16 |
15
|
anbi1d |
|- ( ( K e. NN0 /\ A e. NN /\ D e. NN ) -> ( ( n e. ( 0 ... ( ( K + 1 ) - 1 ) ) /\ x = ( A + ( n x. D ) ) ) <-> ( ( n = 0 \/ n e. ( ( 0 + 1 ) ... K ) ) /\ x = ( A + ( n x. D ) ) ) ) ) |
17 |
|
andir |
|- ( ( ( n = 0 \/ n e. ( ( 0 + 1 ) ... K ) ) /\ x = ( A + ( n x. D ) ) ) <-> ( ( n = 0 /\ x = ( A + ( n x. D ) ) ) \/ ( n e. ( ( 0 + 1 ) ... K ) /\ x = ( A + ( n x. D ) ) ) ) ) |
18 |
16 17
|
bitrdi |
|- ( ( K e. NN0 /\ A e. NN /\ D e. NN ) -> ( ( n e. ( 0 ... ( ( K + 1 ) - 1 ) ) /\ x = ( A + ( n x. D ) ) ) <-> ( ( n = 0 /\ x = ( A + ( n x. D ) ) ) \/ ( n e. ( ( 0 + 1 ) ... K ) /\ x = ( A + ( n x. D ) ) ) ) ) ) |
19 |
18
|
exbidv |
|- ( ( K e. NN0 /\ A e. NN /\ D e. NN ) -> ( E. n ( n e. ( 0 ... ( ( K + 1 ) - 1 ) ) /\ x = ( A + ( n x. D ) ) ) <-> E. n ( ( n = 0 /\ x = ( A + ( n x. D ) ) ) \/ ( n e. ( ( 0 + 1 ) ... K ) /\ x = ( A + ( n x. D ) ) ) ) ) ) |
20 |
|
df-rex |
|- ( E. n e. ( 0 ... ( ( K + 1 ) - 1 ) ) x = ( A + ( n x. D ) ) <-> E. n ( n e. ( 0 ... ( ( K + 1 ) - 1 ) ) /\ x = ( A + ( n x. D ) ) ) ) |
21 |
|
19.43 |
|- ( E. n ( ( n = 0 /\ x = ( A + ( n x. D ) ) ) \/ ( n e. ( ( 0 + 1 ) ... K ) /\ x = ( A + ( n x. D ) ) ) ) <-> ( E. n ( n = 0 /\ x = ( A + ( n x. D ) ) ) \/ E. n ( n e. ( ( 0 + 1 ) ... K ) /\ x = ( A + ( n x. D ) ) ) ) ) |
22 |
21
|
bicomi |
|- ( ( E. n ( n = 0 /\ x = ( A + ( n x. D ) ) ) \/ E. n ( n e. ( ( 0 + 1 ) ... K ) /\ x = ( A + ( n x. D ) ) ) ) <-> E. n ( ( n = 0 /\ x = ( A + ( n x. D ) ) ) \/ ( n e. ( ( 0 + 1 ) ... K ) /\ x = ( A + ( n x. D ) ) ) ) ) |
23 |
19 20 22
|
3bitr4g |
|- ( ( K e. NN0 /\ A e. NN /\ D e. NN ) -> ( E. n e. ( 0 ... ( ( K + 1 ) - 1 ) ) x = ( A + ( n x. D ) ) <-> ( E. n ( n = 0 /\ x = ( A + ( n x. D ) ) ) \/ E. n ( n e. ( ( 0 + 1 ) ... K ) /\ x = ( A + ( n x. D ) ) ) ) ) ) |
24 |
3 23
|
bitrd |
|- ( ( K e. NN0 /\ A e. NN /\ D e. NN ) -> ( x e. ( A ( AP ` ( K + 1 ) ) D ) <-> ( E. n ( n = 0 /\ x = ( A + ( n x. D ) ) ) \/ E. n ( n e. ( ( 0 + 1 ) ... K ) /\ x = ( A + ( n x. D ) ) ) ) ) ) |
25 |
|
nncn |
|- ( D e. NN -> D e. CC ) |
26 |
25
|
3ad2ant3 |
|- ( ( K e. NN0 /\ A e. NN /\ D e. NN ) -> D e. CC ) |
27 |
26
|
mul02d |
|- ( ( K e. NN0 /\ A e. NN /\ D e. NN ) -> ( 0 x. D ) = 0 ) |
28 |
27
|
oveq2d |
|- ( ( K e. NN0 /\ A e. NN /\ D e. NN ) -> ( A + ( 0 x. D ) ) = ( A + 0 ) ) |
29 |
|
nncn |
|- ( A e. NN -> A e. CC ) |
30 |
29
|
3ad2ant2 |
|- ( ( K e. NN0 /\ A e. NN /\ D e. NN ) -> A e. CC ) |
31 |
30
|
addid1d |
|- ( ( K e. NN0 /\ A e. NN /\ D e. NN ) -> ( A + 0 ) = A ) |
32 |
28 31
|
eqtrd |
|- ( ( K e. NN0 /\ A e. NN /\ D e. NN ) -> ( A + ( 0 x. D ) ) = A ) |
33 |
32
|
eqeq2d |
|- ( ( K e. NN0 /\ A e. NN /\ D e. NN ) -> ( x = ( A + ( 0 x. D ) ) <-> x = A ) ) |
34 |
|
c0ex |
|- 0 e. _V |
35 |
|
oveq1 |
|- ( n = 0 -> ( n x. D ) = ( 0 x. D ) ) |
36 |
35
|
oveq2d |
|- ( n = 0 -> ( A + ( n x. D ) ) = ( A + ( 0 x. D ) ) ) |
37 |
36
|
eqeq2d |
|- ( n = 0 -> ( x = ( A + ( n x. D ) ) <-> x = ( A + ( 0 x. D ) ) ) ) |
38 |
34 37
|
ceqsexv |
|- ( E. n ( n = 0 /\ x = ( A + ( n x. D ) ) ) <-> x = ( A + ( 0 x. D ) ) ) |
39 |
|
velsn |
|- ( x e. { A } <-> x = A ) |
40 |
33 38 39
|
3bitr4g |
|- ( ( K e. NN0 /\ A e. NN /\ D e. NN ) -> ( E. n ( n = 0 /\ x = ( A + ( n x. D ) ) ) <-> x e. { A } ) ) |
41 |
|
simpr |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ n e. ( ( 0 + 1 ) ... K ) ) -> n e. ( ( 0 + 1 ) ... K ) ) |
42 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
43 |
42
|
oveq1i |
|- ( ( 0 + 1 ) ... K ) = ( 1 ... K ) |
44 |
41 43
|
eleqtrdi |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ n e. ( ( 0 + 1 ) ... K ) ) -> n e. ( 1 ... K ) ) |
45 |
|
1zzd |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ n e. ( ( 0 + 1 ) ... K ) ) -> 1 e. ZZ ) |
46 |
4
|
adantr |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ n e. ( ( 0 + 1 ) ... K ) ) -> K e. NN0 ) |
47 |
46
|
nn0zd |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ n e. ( ( 0 + 1 ) ... K ) ) -> K e. ZZ ) |
48 |
|
elfzelz |
|- ( n e. ( ( 0 + 1 ) ... K ) -> n e. ZZ ) |
49 |
48
|
adantl |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ n e. ( ( 0 + 1 ) ... K ) ) -> n e. ZZ ) |
50 |
|
fzsubel |
|- ( ( ( 1 e. ZZ /\ K e. ZZ ) /\ ( n e. ZZ /\ 1 e. ZZ ) ) -> ( n e. ( 1 ... K ) <-> ( n - 1 ) e. ( ( 1 - 1 ) ... ( K - 1 ) ) ) ) |
51 |
45 47 49 45 50
|
syl22anc |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ n e. ( ( 0 + 1 ) ... K ) ) -> ( n e. ( 1 ... K ) <-> ( n - 1 ) e. ( ( 1 - 1 ) ... ( K - 1 ) ) ) ) |
52 |
44 51
|
mpbid |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ n e. ( ( 0 + 1 ) ... K ) ) -> ( n - 1 ) e. ( ( 1 - 1 ) ... ( K - 1 ) ) ) |
53 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
54 |
53
|
oveq1i |
|- ( ( 1 - 1 ) ... ( K - 1 ) ) = ( 0 ... ( K - 1 ) ) |
55 |
52 54
|
eleqtrdi |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ n e. ( ( 0 + 1 ) ... K ) ) -> ( n - 1 ) e. ( 0 ... ( K - 1 ) ) ) |
56 |
49
|
zcnd |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ n e. ( ( 0 + 1 ) ... K ) ) -> n e. CC ) |
57 |
|
1cnd |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ n e. ( ( 0 + 1 ) ... K ) ) -> 1 e. CC ) |
58 |
26
|
adantr |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ n e. ( ( 0 + 1 ) ... K ) ) -> D e. CC ) |
59 |
56 57 58
|
subdird |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ n e. ( ( 0 + 1 ) ... K ) ) -> ( ( n - 1 ) x. D ) = ( ( n x. D ) - ( 1 x. D ) ) ) |
60 |
58
|
mulid2d |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ n e. ( ( 0 + 1 ) ... K ) ) -> ( 1 x. D ) = D ) |
61 |
60
|
oveq2d |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ n e. ( ( 0 + 1 ) ... K ) ) -> ( ( n x. D ) - ( 1 x. D ) ) = ( ( n x. D ) - D ) ) |
62 |
59 61
|
eqtrd |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ n e. ( ( 0 + 1 ) ... K ) ) -> ( ( n - 1 ) x. D ) = ( ( n x. D ) - D ) ) |
63 |
62
|
oveq2d |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ n e. ( ( 0 + 1 ) ... K ) ) -> ( D + ( ( n - 1 ) x. D ) ) = ( D + ( ( n x. D ) - D ) ) ) |
64 |
56 58
|
mulcld |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ n e. ( ( 0 + 1 ) ... K ) ) -> ( n x. D ) e. CC ) |
65 |
58 64
|
pncan3d |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ n e. ( ( 0 + 1 ) ... K ) ) -> ( D + ( ( n x. D ) - D ) ) = ( n x. D ) ) |
66 |
63 65
|
eqtr2d |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ n e. ( ( 0 + 1 ) ... K ) ) -> ( n x. D ) = ( D + ( ( n - 1 ) x. D ) ) ) |
67 |
66
|
oveq2d |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ n e. ( ( 0 + 1 ) ... K ) ) -> ( A + ( n x. D ) ) = ( A + ( D + ( ( n - 1 ) x. D ) ) ) ) |
68 |
30
|
adantr |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ n e. ( ( 0 + 1 ) ... K ) ) -> A e. CC ) |
69 |
|
subcl |
|- ( ( n e. CC /\ 1 e. CC ) -> ( n - 1 ) e. CC ) |
70 |
56 6 69
|
sylancl |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ n e. ( ( 0 + 1 ) ... K ) ) -> ( n - 1 ) e. CC ) |
71 |
70 58
|
mulcld |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ n e. ( ( 0 + 1 ) ... K ) ) -> ( ( n - 1 ) x. D ) e. CC ) |
72 |
68 58 71
|
addassd |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ n e. ( ( 0 + 1 ) ... K ) ) -> ( ( A + D ) + ( ( n - 1 ) x. D ) ) = ( A + ( D + ( ( n - 1 ) x. D ) ) ) ) |
73 |
67 72
|
eqtr4d |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ n e. ( ( 0 + 1 ) ... K ) ) -> ( A + ( n x. D ) ) = ( ( A + D ) + ( ( n - 1 ) x. D ) ) ) |
74 |
|
oveq1 |
|- ( m = ( n - 1 ) -> ( m x. D ) = ( ( n - 1 ) x. D ) ) |
75 |
74
|
oveq2d |
|- ( m = ( n - 1 ) -> ( ( A + D ) + ( m x. D ) ) = ( ( A + D ) + ( ( n - 1 ) x. D ) ) ) |
76 |
75
|
rspceeqv |
|- ( ( ( n - 1 ) e. ( 0 ... ( K - 1 ) ) /\ ( A + ( n x. D ) ) = ( ( A + D ) + ( ( n - 1 ) x. D ) ) ) -> E. m e. ( 0 ... ( K - 1 ) ) ( A + ( n x. D ) ) = ( ( A + D ) + ( m x. D ) ) ) |
77 |
55 73 76
|
syl2anc |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ n e. ( ( 0 + 1 ) ... K ) ) -> E. m e. ( 0 ... ( K - 1 ) ) ( A + ( n x. D ) ) = ( ( A + D ) + ( m x. D ) ) ) |
78 |
|
eqeq1 |
|- ( x = ( A + ( n x. D ) ) -> ( x = ( ( A + D ) + ( m x. D ) ) <-> ( A + ( n x. D ) ) = ( ( A + D ) + ( m x. D ) ) ) ) |
79 |
78
|
rexbidv |
|- ( x = ( A + ( n x. D ) ) -> ( E. m e. ( 0 ... ( K - 1 ) ) x = ( ( A + D ) + ( m x. D ) ) <-> E. m e. ( 0 ... ( K - 1 ) ) ( A + ( n x. D ) ) = ( ( A + D ) + ( m x. D ) ) ) ) |
80 |
77 79
|
syl5ibrcom |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ n e. ( ( 0 + 1 ) ... K ) ) -> ( x = ( A + ( n x. D ) ) -> E. m e. ( 0 ... ( K - 1 ) ) x = ( ( A + D ) + ( m x. D ) ) ) ) |
81 |
80
|
expimpd |
|- ( ( K e. NN0 /\ A e. NN /\ D e. NN ) -> ( ( n e. ( ( 0 + 1 ) ... K ) /\ x = ( A + ( n x. D ) ) ) -> E. m e. ( 0 ... ( K - 1 ) ) x = ( ( A + D ) + ( m x. D ) ) ) ) |
82 |
81
|
exlimdv |
|- ( ( K e. NN0 /\ A e. NN /\ D e. NN ) -> ( E. n ( n e. ( ( 0 + 1 ) ... K ) /\ x = ( A + ( n x. D ) ) ) -> E. m e. ( 0 ... ( K - 1 ) ) x = ( ( A + D ) + ( m x. D ) ) ) ) |
83 |
|
simpr |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> m e. ( 0 ... ( K - 1 ) ) ) |
84 |
|
0zd |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> 0 e. ZZ ) |
85 |
4
|
adantr |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> K e. NN0 ) |
86 |
85
|
nn0zd |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> K e. ZZ ) |
87 |
|
peano2zm |
|- ( K e. ZZ -> ( K - 1 ) e. ZZ ) |
88 |
86 87
|
syl |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( K - 1 ) e. ZZ ) |
89 |
|
elfzelz |
|- ( m e. ( 0 ... ( K - 1 ) ) -> m e. ZZ ) |
90 |
89
|
adantl |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> m e. ZZ ) |
91 |
|
1zzd |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> 1 e. ZZ ) |
92 |
|
fzaddel |
|- ( ( ( 0 e. ZZ /\ ( K - 1 ) e. ZZ ) /\ ( m e. ZZ /\ 1 e. ZZ ) ) -> ( m e. ( 0 ... ( K - 1 ) ) <-> ( m + 1 ) e. ( ( 0 + 1 ) ... ( ( K - 1 ) + 1 ) ) ) ) |
93 |
84 88 90 91 92
|
syl22anc |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( m e. ( 0 ... ( K - 1 ) ) <-> ( m + 1 ) e. ( ( 0 + 1 ) ... ( ( K - 1 ) + 1 ) ) ) ) |
94 |
83 93
|
mpbid |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( m + 1 ) e. ( ( 0 + 1 ) ... ( ( K - 1 ) + 1 ) ) ) |
95 |
85
|
nn0cnd |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> K e. CC ) |
96 |
|
npcan |
|- ( ( K e. CC /\ 1 e. CC ) -> ( ( K - 1 ) + 1 ) = K ) |
97 |
95 6 96
|
sylancl |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( K - 1 ) + 1 ) = K ) |
98 |
97
|
oveq2d |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( 0 + 1 ) ... ( ( K - 1 ) + 1 ) ) = ( ( 0 + 1 ) ... K ) ) |
99 |
94 98
|
eleqtrd |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( m + 1 ) e. ( ( 0 + 1 ) ... K ) ) |
100 |
30
|
adantr |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> A e. CC ) |
101 |
26
|
adantr |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> D e. CC ) |
102 |
90
|
zcnd |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> m e. CC ) |
103 |
102 101
|
mulcld |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( m x. D ) e. CC ) |
104 |
100 101 103
|
addassd |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( A + D ) + ( m x. D ) ) = ( A + ( D + ( m x. D ) ) ) ) |
105 |
|
1cnd |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> 1 e. CC ) |
106 |
102 105 101
|
adddird |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( m + 1 ) x. D ) = ( ( m x. D ) + ( 1 x. D ) ) ) |
107 |
101 103
|
addcomd |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( D + ( m x. D ) ) = ( ( m x. D ) + D ) ) |
108 |
101
|
mulid2d |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( 1 x. D ) = D ) |
109 |
108
|
oveq2d |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( m x. D ) + ( 1 x. D ) ) = ( ( m x. D ) + D ) ) |
110 |
107 109
|
eqtr4d |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( D + ( m x. D ) ) = ( ( m x. D ) + ( 1 x. D ) ) ) |
111 |
106 110
|
eqtr4d |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( m + 1 ) x. D ) = ( D + ( m x. D ) ) ) |
112 |
111
|
oveq2d |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( A + ( ( m + 1 ) x. D ) ) = ( A + ( D + ( m x. D ) ) ) ) |
113 |
104 112
|
eqtr4d |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( A + D ) + ( m x. D ) ) = ( A + ( ( m + 1 ) x. D ) ) ) |
114 |
|
ovex |
|- ( m + 1 ) e. _V |
115 |
|
eleq1 |
|- ( n = ( m + 1 ) -> ( n e. ( ( 0 + 1 ) ... K ) <-> ( m + 1 ) e. ( ( 0 + 1 ) ... K ) ) ) |
116 |
|
oveq1 |
|- ( n = ( m + 1 ) -> ( n x. D ) = ( ( m + 1 ) x. D ) ) |
117 |
116
|
oveq2d |
|- ( n = ( m + 1 ) -> ( A + ( n x. D ) ) = ( A + ( ( m + 1 ) x. D ) ) ) |
118 |
117
|
eqeq2d |
|- ( n = ( m + 1 ) -> ( ( ( A + D ) + ( m x. D ) ) = ( A + ( n x. D ) ) <-> ( ( A + D ) + ( m x. D ) ) = ( A + ( ( m + 1 ) x. D ) ) ) ) |
119 |
115 118
|
anbi12d |
|- ( n = ( m + 1 ) -> ( ( n e. ( ( 0 + 1 ) ... K ) /\ ( ( A + D ) + ( m x. D ) ) = ( A + ( n x. D ) ) ) <-> ( ( m + 1 ) e. ( ( 0 + 1 ) ... K ) /\ ( ( A + D ) + ( m x. D ) ) = ( A + ( ( m + 1 ) x. D ) ) ) ) ) |
120 |
114 119
|
spcev |
|- ( ( ( m + 1 ) e. ( ( 0 + 1 ) ... K ) /\ ( ( A + D ) + ( m x. D ) ) = ( A + ( ( m + 1 ) x. D ) ) ) -> E. n ( n e. ( ( 0 + 1 ) ... K ) /\ ( ( A + D ) + ( m x. D ) ) = ( A + ( n x. D ) ) ) ) |
121 |
99 113 120
|
syl2anc |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> E. n ( n e. ( ( 0 + 1 ) ... K ) /\ ( ( A + D ) + ( m x. D ) ) = ( A + ( n x. D ) ) ) ) |
122 |
|
eqeq1 |
|- ( x = ( ( A + D ) + ( m x. D ) ) -> ( x = ( A + ( n x. D ) ) <-> ( ( A + D ) + ( m x. D ) ) = ( A + ( n x. D ) ) ) ) |
123 |
122
|
anbi2d |
|- ( x = ( ( A + D ) + ( m x. D ) ) -> ( ( n e. ( ( 0 + 1 ) ... K ) /\ x = ( A + ( n x. D ) ) ) <-> ( n e. ( ( 0 + 1 ) ... K ) /\ ( ( A + D ) + ( m x. D ) ) = ( A + ( n x. D ) ) ) ) ) |
124 |
123
|
exbidv |
|- ( x = ( ( A + D ) + ( m x. D ) ) -> ( E. n ( n e. ( ( 0 + 1 ) ... K ) /\ x = ( A + ( n x. D ) ) ) <-> E. n ( n e. ( ( 0 + 1 ) ... K ) /\ ( ( A + D ) + ( m x. D ) ) = ( A + ( n x. D ) ) ) ) ) |
125 |
121 124
|
syl5ibrcom |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( x = ( ( A + D ) + ( m x. D ) ) -> E. n ( n e. ( ( 0 + 1 ) ... K ) /\ x = ( A + ( n x. D ) ) ) ) ) |
126 |
125
|
rexlimdva |
|- ( ( K e. NN0 /\ A e. NN /\ D e. NN ) -> ( E. m e. ( 0 ... ( K - 1 ) ) x = ( ( A + D ) + ( m x. D ) ) -> E. n ( n e. ( ( 0 + 1 ) ... K ) /\ x = ( A + ( n x. D ) ) ) ) ) |
127 |
82 126
|
impbid |
|- ( ( K e. NN0 /\ A e. NN /\ D e. NN ) -> ( E. n ( n e. ( ( 0 + 1 ) ... K ) /\ x = ( A + ( n x. D ) ) ) <-> E. m e. ( 0 ... ( K - 1 ) ) x = ( ( A + D ) + ( m x. D ) ) ) ) |
128 |
|
nnaddcl |
|- ( ( A e. NN /\ D e. NN ) -> ( A + D ) e. NN ) |
129 |
128
|
3adant1 |
|- ( ( K e. NN0 /\ A e. NN /\ D e. NN ) -> ( A + D ) e. NN ) |
130 |
|
vdwapval |
|- ( ( K e. NN0 /\ ( A + D ) e. NN /\ D e. NN ) -> ( x e. ( ( A + D ) ( AP ` K ) D ) <-> E. m e. ( 0 ... ( K - 1 ) ) x = ( ( A + D ) + ( m x. D ) ) ) ) |
131 |
129 130
|
syld3an2 |
|- ( ( K e. NN0 /\ A e. NN /\ D e. NN ) -> ( x e. ( ( A + D ) ( AP ` K ) D ) <-> E. m e. ( 0 ... ( K - 1 ) ) x = ( ( A + D ) + ( m x. D ) ) ) ) |
132 |
127 131
|
bitr4d |
|- ( ( K e. NN0 /\ A e. NN /\ D e. NN ) -> ( E. n ( n e. ( ( 0 + 1 ) ... K ) /\ x = ( A + ( n x. D ) ) ) <-> x e. ( ( A + D ) ( AP ` K ) D ) ) ) |
133 |
40 132
|
orbi12d |
|- ( ( K e. NN0 /\ A e. NN /\ D e. NN ) -> ( ( E. n ( n = 0 /\ x = ( A + ( n x. D ) ) ) \/ E. n ( n e. ( ( 0 + 1 ) ... K ) /\ x = ( A + ( n x. D ) ) ) ) <-> ( x e. { A } \/ x e. ( ( A + D ) ( AP ` K ) D ) ) ) ) |
134 |
|
elun |
|- ( x e. ( { A } u. ( ( A + D ) ( AP ` K ) D ) ) <-> ( x e. { A } \/ x e. ( ( A + D ) ( AP ` K ) D ) ) ) |
135 |
133 134
|
bitr4di |
|- ( ( K e. NN0 /\ A e. NN /\ D e. NN ) -> ( ( E. n ( n = 0 /\ x = ( A + ( n x. D ) ) ) \/ E. n ( n e. ( ( 0 + 1 ) ... K ) /\ x = ( A + ( n x. D ) ) ) ) <-> x e. ( { A } u. ( ( A + D ) ( AP ` K ) D ) ) ) ) |
136 |
24 135
|
bitrd |
|- ( ( K e. NN0 /\ A e. NN /\ D e. NN ) -> ( x e. ( A ( AP ` ( K + 1 ) ) D ) <-> x e. ( { A } u. ( ( A + D ) ( AP ` K ) D ) ) ) ) |
137 |
136
|
eqrdv |
|- ( ( K e. NN0 /\ A e. NN /\ D e. NN ) -> ( A ( AP ` ( K + 1 ) ) D ) = ( { A } u. ( ( A + D ) ( AP ` K ) D ) ) ) |