| Step |
Hyp |
Ref |
Expression |
| 1 |
|
peano2nn0 |
|- ( K e. NN0 -> ( K + 1 ) e. NN0 ) |
| 2 |
|
vdwapval |
|- ( ( ( K + 1 ) e. NN0 /\ A e. NN /\ D e. NN ) -> ( x e. ( A ( AP ` ( K + 1 ) ) D ) <-> E. n e. ( 0 ... ( ( K + 1 ) - 1 ) ) x = ( A + ( n x. D ) ) ) ) |
| 3 |
1 2
|
syl3an1 |
|- ( ( K e. NN0 /\ A e. NN /\ D e. NN ) -> ( x e. ( A ( AP ` ( K + 1 ) ) D ) <-> E. n e. ( 0 ... ( ( K + 1 ) - 1 ) ) x = ( A + ( n x. D ) ) ) ) |
| 4 |
|
simp1 |
|- ( ( K e. NN0 /\ A e. NN /\ D e. NN ) -> K e. NN0 ) |
| 5 |
4
|
nn0cnd |
|- ( ( K e. NN0 /\ A e. NN /\ D e. NN ) -> K e. CC ) |
| 6 |
|
ax-1cn |
|- 1 e. CC |
| 7 |
|
pncan |
|- ( ( K e. CC /\ 1 e. CC ) -> ( ( K + 1 ) - 1 ) = K ) |
| 8 |
5 6 7
|
sylancl |
|- ( ( K e. NN0 /\ A e. NN /\ D e. NN ) -> ( ( K + 1 ) - 1 ) = K ) |
| 9 |
8
|
oveq2d |
|- ( ( K e. NN0 /\ A e. NN /\ D e. NN ) -> ( 0 ... ( ( K + 1 ) - 1 ) ) = ( 0 ... K ) ) |
| 10 |
9
|
eleq2d |
|- ( ( K e. NN0 /\ A e. NN /\ D e. NN ) -> ( n e. ( 0 ... ( ( K + 1 ) - 1 ) ) <-> n e. ( 0 ... K ) ) ) |
| 11 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 12 |
4 11
|
eleqtrdi |
|- ( ( K e. NN0 /\ A e. NN /\ D e. NN ) -> K e. ( ZZ>= ` 0 ) ) |
| 13 |
|
elfzp12 |
|- ( K e. ( ZZ>= ` 0 ) -> ( n e. ( 0 ... K ) <-> ( n = 0 \/ n e. ( ( 0 + 1 ) ... K ) ) ) ) |
| 14 |
12 13
|
syl |
|- ( ( K e. NN0 /\ A e. NN /\ D e. NN ) -> ( n e. ( 0 ... K ) <-> ( n = 0 \/ n e. ( ( 0 + 1 ) ... K ) ) ) ) |
| 15 |
10 14
|
bitrd |
|- ( ( K e. NN0 /\ A e. NN /\ D e. NN ) -> ( n e. ( 0 ... ( ( K + 1 ) - 1 ) ) <-> ( n = 0 \/ n e. ( ( 0 + 1 ) ... K ) ) ) ) |
| 16 |
15
|
anbi1d |
|- ( ( K e. NN0 /\ A e. NN /\ D e. NN ) -> ( ( n e. ( 0 ... ( ( K + 1 ) - 1 ) ) /\ x = ( A + ( n x. D ) ) ) <-> ( ( n = 0 \/ n e. ( ( 0 + 1 ) ... K ) ) /\ x = ( A + ( n x. D ) ) ) ) ) |
| 17 |
|
andir |
|- ( ( ( n = 0 \/ n e. ( ( 0 + 1 ) ... K ) ) /\ x = ( A + ( n x. D ) ) ) <-> ( ( n = 0 /\ x = ( A + ( n x. D ) ) ) \/ ( n e. ( ( 0 + 1 ) ... K ) /\ x = ( A + ( n x. D ) ) ) ) ) |
| 18 |
16 17
|
bitrdi |
|- ( ( K e. NN0 /\ A e. NN /\ D e. NN ) -> ( ( n e. ( 0 ... ( ( K + 1 ) - 1 ) ) /\ x = ( A + ( n x. D ) ) ) <-> ( ( n = 0 /\ x = ( A + ( n x. D ) ) ) \/ ( n e. ( ( 0 + 1 ) ... K ) /\ x = ( A + ( n x. D ) ) ) ) ) ) |
| 19 |
18
|
exbidv |
|- ( ( K e. NN0 /\ A e. NN /\ D e. NN ) -> ( E. n ( n e. ( 0 ... ( ( K + 1 ) - 1 ) ) /\ x = ( A + ( n x. D ) ) ) <-> E. n ( ( n = 0 /\ x = ( A + ( n x. D ) ) ) \/ ( n e. ( ( 0 + 1 ) ... K ) /\ x = ( A + ( n x. D ) ) ) ) ) ) |
| 20 |
|
df-rex |
|- ( E. n e. ( 0 ... ( ( K + 1 ) - 1 ) ) x = ( A + ( n x. D ) ) <-> E. n ( n e. ( 0 ... ( ( K + 1 ) - 1 ) ) /\ x = ( A + ( n x. D ) ) ) ) |
| 21 |
|
19.43 |
|- ( E. n ( ( n = 0 /\ x = ( A + ( n x. D ) ) ) \/ ( n e. ( ( 0 + 1 ) ... K ) /\ x = ( A + ( n x. D ) ) ) ) <-> ( E. n ( n = 0 /\ x = ( A + ( n x. D ) ) ) \/ E. n ( n e. ( ( 0 + 1 ) ... K ) /\ x = ( A + ( n x. D ) ) ) ) ) |
| 22 |
21
|
bicomi |
|- ( ( E. n ( n = 0 /\ x = ( A + ( n x. D ) ) ) \/ E. n ( n e. ( ( 0 + 1 ) ... K ) /\ x = ( A + ( n x. D ) ) ) ) <-> E. n ( ( n = 0 /\ x = ( A + ( n x. D ) ) ) \/ ( n e. ( ( 0 + 1 ) ... K ) /\ x = ( A + ( n x. D ) ) ) ) ) |
| 23 |
19 20 22
|
3bitr4g |
|- ( ( K e. NN0 /\ A e. NN /\ D e. NN ) -> ( E. n e. ( 0 ... ( ( K + 1 ) - 1 ) ) x = ( A + ( n x. D ) ) <-> ( E. n ( n = 0 /\ x = ( A + ( n x. D ) ) ) \/ E. n ( n e. ( ( 0 + 1 ) ... K ) /\ x = ( A + ( n x. D ) ) ) ) ) ) |
| 24 |
3 23
|
bitrd |
|- ( ( K e. NN0 /\ A e. NN /\ D e. NN ) -> ( x e. ( A ( AP ` ( K + 1 ) ) D ) <-> ( E. n ( n = 0 /\ x = ( A + ( n x. D ) ) ) \/ E. n ( n e. ( ( 0 + 1 ) ... K ) /\ x = ( A + ( n x. D ) ) ) ) ) ) |
| 25 |
|
nncn |
|- ( D e. NN -> D e. CC ) |
| 26 |
25
|
3ad2ant3 |
|- ( ( K e. NN0 /\ A e. NN /\ D e. NN ) -> D e. CC ) |
| 27 |
26
|
mul02d |
|- ( ( K e. NN0 /\ A e. NN /\ D e. NN ) -> ( 0 x. D ) = 0 ) |
| 28 |
27
|
oveq2d |
|- ( ( K e. NN0 /\ A e. NN /\ D e. NN ) -> ( A + ( 0 x. D ) ) = ( A + 0 ) ) |
| 29 |
|
nncn |
|- ( A e. NN -> A e. CC ) |
| 30 |
29
|
3ad2ant2 |
|- ( ( K e. NN0 /\ A e. NN /\ D e. NN ) -> A e. CC ) |
| 31 |
30
|
addridd |
|- ( ( K e. NN0 /\ A e. NN /\ D e. NN ) -> ( A + 0 ) = A ) |
| 32 |
28 31
|
eqtrd |
|- ( ( K e. NN0 /\ A e. NN /\ D e. NN ) -> ( A + ( 0 x. D ) ) = A ) |
| 33 |
32
|
eqeq2d |
|- ( ( K e. NN0 /\ A e. NN /\ D e. NN ) -> ( x = ( A + ( 0 x. D ) ) <-> x = A ) ) |
| 34 |
|
c0ex |
|- 0 e. _V |
| 35 |
|
oveq1 |
|- ( n = 0 -> ( n x. D ) = ( 0 x. D ) ) |
| 36 |
35
|
oveq2d |
|- ( n = 0 -> ( A + ( n x. D ) ) = ( A + ( 0 x. D ) ) ) |
| 37 |
36
|
eqeq2d |
|- ( n = 0 -> ( x = ( A + ( n x. D ) ) <-> x = ( A + ( 0 x. D ) ) ) ) |
| 38 |
34 37
|
ceqsexv |
|- ( E. n ( n = 0 /\ x = ( A + ( n x. D ) ) ) <-> x = ( A + ( 0 x. D ) ) ) |
| 39 |
|
velsn |
|- ( x e. { A } <-> x = A ) |
| 40 |
33 38 39
|
3bitr4g |
|- ( ( K e. NN0 /\ A e. NN /\ D e. NN ) -> ( E. n ( n = 0 /\ x = ( A + ( n x. D ) ) ) <-> x e. { A } ) ) |
| 41 |
|
simpr |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ n e. ( ( 0 + 1 ) ... K ) ) -> n e. ( ( 0 + 1 ) ... K ) ) |
| 42 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
| 43 |
42
|
oveq1i |
|- ( ( 0 + 1 ) ... K ) = ( 1 ... K ) |
| 44 |
41 43
|
eleqtrdi |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ n e. ( ( 0 + 1 ) ... K ) ) -> n e. ( 1 ... K ) ) |
| 45 |
|
1zzd |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ n e. ( ( 0 + 1 ) ... K ) ) -> 1 e. ZZ ) |
| 46 |
4
|
adantr |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ n e. ( ( 0 + 1 ) ... K ) ) -> K e. NN0 ) |
| 47 |
46
|
nn0zd |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ n e. ( ( 0 + 1 ) ... K ) ) -> K e. ZZ ) |
| 48 |
|
elfzelz |
|- ( n e. ( ( 0 + 1 ) ... K ) -> n e. ZZ ) |
| 49 |
48
|
adantl |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ n e. ( ( 0 + 1 ) ... K ) ) -> n e. ZZ ) |
| 50 |
|
fzsubel |
|- ( ( ( 1 e. ZZ /\ K e. ZZ ) /\ ( n e. ZZ /\ 1 e. ZZ ) ) -> ( n e. ( 1 ... K ) <-> ( n - 1 ) e. ( ( 1 - 1 ) ... ( K - 1 ) ) ) ) |
| 51 |
45 47 49 45 50
|
syl22anc |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ n e. ( ( 0 + 1 ) ... K ) ) -> ( n e. ( 1 ... K ) <-> ( n - 1 ) e. ( ( 1 - 1 ) ... ( K - 1 ) ) ) ) |
| 52 |
44 51
|
mpbid |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ n e. ( ( 0 + 1 ) ... K ) ) -> ( n - 1 ) e. ( ( 1 - 1 ) ... ( K - 1 ) ) ) |
| 53 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
| 54 |
53
|
oveq1i |
|- ( ( 1 - 1 ) ... ( K - 1 ) ) = ( 0 ... ( K - 1 ) ) |
| 55 |
52 54
|
eleqtrdi |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ n e. ( ( 0 + 1 ) ... K ) ) -> ( n - 1 ) e. ( 0 ... ( K - 1 ) ) ) |
| 56 |
49
|
zcnd |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ n e. ( ( 0 + 1 ) ... K ) ) -> n e. CC ) |
| 57 |
|
1cnd |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ n e. ( ( 0 + 1 ) ... K ) ) -> 1 e. CC ) |
| 58 |
26
|
adantr |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ n e. ( ( 0 + 1 ) ... K ) ) -> D e. CC ) |
| 59 |
56 57 58
|
subdird |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ n e. ( ( 0 + 1 ) ... K ) ) -> ( ( n - 1 ) x. D ) = ( ( n x. D ) - ( 1 x. D ) ) ) |
| 60 |
58
|
mullidd |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ n e. ( ( 0 + 1 ) ... K ) ) -> ( 1 x. D ) = D ) |
| 61 |
60
|
oveq2d |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ n e. ( ( 0 + 1 ) ... K ) ) -> ( ( n x. D ) - ( 1 x. D ) ) = ( ( n x. D ) - D ) ) |
| 62 |
59 61
|
eqtrd |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ n e. ( ( 0 + 1 ) ... K ) ) -> ( ( n - 1 ) x. D ) = ( ( n x. D ) - D ) ) |
| 63 |
62
|
oveq2d |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ n e. ( ( 0 + 1 ) ... K ) ) -> ( D + ( ( n - 1 ) x. D ) ) = ( D + ( ( n x. D ) - D ) ) ) |
| 64 |
56 58
|
mulcld |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ n e. ( ( 0 + 1 ) ... K ) ) -> ( n x. D ) e. CC ) |
| 65 |
58 64
|
pncan3d |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ n e. ( ( 0 + 1 ) ... K ) ) -> ( D + ( ( n x. D ) - D ) ) = ( n x. D ) ) |
| 66 |
63 65
|
eqtr2d |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ n e. ( ( 0 + 1 ) ... K ) ) -> ( n x. D ) = ( D + ( ( n - 1 ) x. D ) ) ) |
| 67 |
66
|
oveq2d |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ n e. ( ( 0 + 1 ) ... K ) ) -> ( A + ( n x. D ) ) = ( A + ( D + ( ( n - 1 ) x. D ) ) ) ) |
| 68 |
30
|
adantr |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ n e. ( ( 0 + 1 ) ... K ) ) -> A e. CC ) |
| 69 |
|
subcl |
|- ( ( n e. CC /\ 1 e. CC ) -> ( n - 1 ) e. CC ) |
| 70 |
56 6 69
|
sylancl |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ n e. ( ( 0 + 1 ) ... K ) ) -> ( n - 1 ) e. CC ) |
| 71 |
70 58
|
mulcld |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ n e. ( ( 0 + 1 ) ... K ) ) -> ( ( n - 1 ) x. D ) e. CC ) |
| 72 |
68 58 71
|
addassd |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ n e. ( ( 0 + 1 ) ... K ) ) -> ( ( A + D ) + ( ( n - 1 ) x. D ) ) = ( A + ( D + ( ( n - 1 ) x. D ) ) ) ) |
| 73 |
67 72
|
eqtr4d |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ n e. ( ( 0 + 1 ) ... K ) ) -> ( A + ( n x. D ) ) = ( ( A + D ) + ( ( n - 1 ) x. D ) ) ) |
| 74 |
|
oveq1 |
|- ( m = ( n - 1 ) -> ( m x. D ) = ( ( n - 1 ) x. D ) ) |
| 75 |
74
|
oveq2d |
|- ( m = ( n - 1 ) -> ( ( A + D ) + ( m x. D ) ) = ( ( A + D ) + ( ( n - 1 ) x. D ) ) ) |
| 76 |
75
|
rspceeqv |
|- ( ( ( n - 1 ) e. ( 0 ... ( K - 1 ) ) /\ ( A + ( n x. D ) ) = ( ( A + D ) + ( ( n - 1 ) x. D ) ) ) -> E. m e. ( 0 ... ( K - 1 ) ) ( A + ( n x. D ) ) = ( ( A + D ) + ( m x. D ) ) ) |
| 77 |
55 73 76
|
syl2anc |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ n e. ( ( 0 + 1 ) ... K ) ) -> E. m e. ( 0 ... ( K - 1 ) ) ( A + ( n x. D ) ) = ( ( A + D ) + ( m x. D ) ) ) |
| 78 |
|
eqeq1 |
|- ( x = ( A + ( n x. D ) ) -> ( x = ( ( A + D ) + ( m x. D ) ) <-> ( A + ( n x. D ) ) = ( ( A + D ) + ( m x. D ) ) ) ) |
| 79 |
78
|
rexbidv |
|- ( x = ( A + ( n x. D ) ) -> ( E. m e. ( 0 ... ( K - 1 ) ) x = ( ( A + D ) + ( m x. D ) ) <-> E. m e. ( 0 ... ( K - 1 ) ) ( A + ( n x. D ) ) = ( ( A + D ) + ( m x. D ) ) ) ) |
| 80 |
77 79
|
syl5ibrcom |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ n e. ( ( 0 + 1 ) ... K ) ) -> ( x = ( A + ( n x. D ) ) -> E. m e. ( 0 ... ( K - 1 ) ) x = ( ( A + D ) + ( m x. D ) ) ) ) |
| 81 |
80
|
expimpd |
|- ( ( K e. NN0 /\ A e. NN /\ D e. NN ) -> ( ( n e. ( ( 0 + 1 ) ... K ) /\ x = ( A + ( n x. D ) ) ) -> E. m e. ( 0 ... ( K - 1 ) ) x = ( ( A + D ) + ( m x. D ) ) ) ) |
| 82 |
81
|
exlimdv |
|- ( ( K e. NN0 /\ A e. NN /\ D e. NN ) -> ( E. n ( n e. ( ( 0 + 1 ) ... K ) /\ x = ( A + ( n x. D ) ) ) -> E. m e. ( 0 ... ( K - 1 ) ) x = ( ( A + D ) + ( m x. D ) ) ) ) |
| 83 |
|
simpr |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> m e. ( 0 ... ( K - 1 ) ) ) |
| 84 |
|
0zd |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> 0 e. ZZ ) |
| 85 |
4
|
adantr |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> K e. NN0 ) |
| 86 |
85
|
nn0zd |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> K e. ZZ ) |
| 87 |
|
peano2zm |
|- ( K e. ZZ -> ( K - 1 ) e. ZZ ) |
| 88 |
86 87
|
syl |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( K - 1 ) e. ZZ ) |
| 89 |
|
elfzelz |
|- ( m e. ( 0 ... ( K - 1 ) ) -> m e. ZZ ) |
| 90 |
89
|
adantl |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> m e. ZZ ) |
| 91 |
|
1zzd |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> 1 e. ZZ ) |
| 92 |
|
fzaddel |
|- ( ( ( 0 e. ZZ /\ ( K - 1 ) e. ZZ ) /\ ( m e. ZZ /\ 1 e. ZZ ) ) -> ( m e. ( 0 ... ( K - 1 ) ) <-> ( m + 1 ) e. ( ( 0 + 1 ) ... ( ( K - 1 ) + 1 ) ) ) ) |
| 93 |
84 88 90 91 92
|
syl22anc |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( m e. ( 0 ... ( K - 1 ) ) <-> ( m + 1 ) e. ( ( 0 + 1 ) ... ( ( K - 1 ) + 1 ) ) ) ) |
| 94 |
83 93
|
mpbid |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( m + 1 ) e. ( ( 0 + 1 ) ... ( ( K - 1 ) + 1 ) ) ) |
| 95 |
85
|
nn0cnd |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> K e. CC ) |
| 96 |
|
npcan |
|- ( ( K e. CC /\ 1 e. CC ) -> ( ( K - 1 ) + 1 ) = K ) |
| 97 |
95 6 96
|
sylancl |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( K - 1 ) + 1 ) = K ) |
| 98 |
97
|
oveq2d |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( 0 + 1 ) ... ( ( K - 1 ) + 1 ) ) = ( ( 0 + 1 ) ... K ) ) |
| 99 |
94 98
|
eleqtrd |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( m + 1 ) e. ( ( 0 + 1 ) ... K ) ) |
| 100 |
30
|
adantr |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> A e. CC ) |
| 101 |
26
|
adantr |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> D e. CC ) |
| 102 |
90
|
zcnd |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> m e. CC ) |
| 103 |
102 101
|
mulcld |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( m x. D ) e. CC ) |
| 104 |
100 101 103
|
addassd |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( A + D ) + ( m x. D ) ) = ( A + ( D + ( m x. D ) ) ) ) |
| 105 |
|
1cnd |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> 1 e. CC ) |
| 106 |
102 105 101
|
adddird |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( m + 1 ) x. D ) = ( ( m x. D ) + ( 1 x. D ) ) ) |
| 107 |
101 103
|
addcomd |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( D + ( m x. D ) ) = ( ( m x. D ) + D ) ) |
| 108 |
101
|
mullidd |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( 1 x. D ) = D ) |
| 109 |
108
|
oveq2d |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( m x. D ) + ( 1 x. D ) ) = ( ( m x. D ) + D ) ) |
| 110 |
107 109
|
eqtr4d |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( D + ( m x. D ) ) = ( ( m x. D ) + ( 1 x. D ) ) ) |
| 111 |
106 110
|
eqtr4d |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( m + 1 ) x. D ) = ( D + ( m x. D ) ) ) |
| 112 |
111
|
oveq2d |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( A + ( ( m + 1 ) x. D ) ) = ( A + ( D + ( m x. D ) ) ) ) |
| 113 |
104 112
|
eqtr4d |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( A + D ) + ( m x. D ) ) = ( A + ( ( m + 1 ) x. D ) ) ) |
| 114 |
|
ovex |
|- ( m + 1 ) e. _V |
| 115 |
|
eleq1 |
|- ( n = ( m + 1 ) -> ( n e. ( ( 0 + 1 ) ... K ) <-> ( m + 1 ) e. ( ( 0 + 1 ) ... K ) ) ) |
| 116 |
|
oveq1 |
|- ( n = ( m + 1 ) -> ( n x. D ) = ( ( m + 1 ) x. D ) ) |
| 117 |
116
|
oveq2d |
|- ( n = ( m + 1 ) -> ( A + ( n x. D ) ) = ( A + ( ( m + 1 ) x. D ) ) ) |
| 118 |
117
|
eqeq2d |
|- ( n = ( m + 1 ) -> ( ( ( A + D ) + ( m x. D ) ) = ( A + ( n x. D ) ) <-> ( ( A + D ) + ( m x. D ) ) = ( A + ( ( m + 1 ) x. D ) ) ) ) |
| 119 |
115 118
|
anbi12d |
|- ( n = ( m + 1 ) -> ( ( n e. ( ( 0 + 1 ) ... K ) /\ ( ( A + D ) + ( m x. D ) ) = ( A + ( n x. D ) ) ) <-> ( ( m + 1 ) e. ( ( 0 + 1 ) ... K ) /\ ( ( A + D ) + ( m x. D ) ) = ( A + ( ( m + 1 ) x. D ) ) ) ) ) |
| 120 |
114 119
|
spcev |
|- ( ( ( m + 1 ) e. ( ( 0 + 1 ) ... K ) /\ ( ( A + D ) + ( m x. D ) ) = ( A + ( ( m + 1 ) x. D ) ) ) -> E. n ( n e. ( ( 0 + 1 ) ... K ) /\ ( ( A + D ) + ( m x. D ) ) = ( A + ( n x. D ) ) ) ) |
| 121 |
99 113 120
|
syl2anc |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> E. n ( n e. ( ( 0 + 1 ) ... K ) /\ ( ( A + D ) + ( m x. D ) ) = ( A + ( n x. D ) ) ) ) |
| 122 |
|
eqeq1 |
|- ( x = ( ( A + D ) + ( m x. D ) ) -> ( x = ( A + ( n x. D ) ) <-> ( ( A + D ) + ( m x. D ) ) = ( A + ( n x. D ) ) ) ) |
| 123 |
122
|
anbi2d |
|- ( x = ( ( A + D ) + ( m x. D ) ) -> ( ( n e. ( ( 0 + 1 ) ... K ) /\ x = ( A + ( n x. D ) ) ) <-> ( n e. ( ( 0 + 1 ) ... K ) /\ ( ( A + D ) + ( m x. D ) ) = ( A + ( n x. D ) ) ) ) ) |
| 124 |
123
|
exbidv |
|- ( x = ( ( A + D ) + ( m x. D ) ) -> ( E. n ( n e. ( ( 0 + 1 ) ... K ) /\ x = ( A + ( n x. D ) ) ) <-> E. n ( n e. ( ( 0 + 1 ) ... K ) /\ ( ( A + D ) + ( m x. D ) ) = ( A + ( n x. D ) ) ) ) ) |
| 125 |
121 124
|
syl5ibrcom |
|- ( ( ( K e. NN0 /\ A e. NN /\ D e. NN ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( x = ( ( A + D ) + ( m x. D ) ) -> E. n ( n e. ( ( 0 + 1 ) ... K ) /\ x = ( A + ( n x. D ) ) ) ) ) |
| 126 |
125
|
rexlimdva |
|- ( ( K e. NN0 /\ A e. NN /\ D e. NN ) -> ( E. m e. ( 0 ... ( K - 1 ) ) x = ( ( A + D ) + ( m x. D ) ) -> E. n ( n e. ( ( 0 + 1 ) ... K ) /\ x = ( A + ( n x. D ) ) ) ) ) |
| 127 |
82 126
|
impbid |
|- ( ( K e. NN0 /\ A e. NN /\ D e. NN ) -> ( E. n ( n e. ( ( 0 + 1 ) ... K ) /\ x = ( A + ( n x. D ) ) ) <-> E. m e. ( 0 ... ( K - 1 ) ) x = ( ( A + D ) + ( m x. D ) ) ) ) |
| 128 |
|
nnaddcl |
|- ( ( A e. NN /\ D e. NN ) -> ( A + D ) e. NN ) |
| 129 |
128
|
3adant1 |
|- ( ( K e. NN0 /\ A e. NN /\ D e. NN ) -> ( A + D ) e. NN ) |
| 130 |
|
vdwapval |
|- ( ( K e. NN0 /\ ( A + D ) e. NN /\ D e. NN ) -> ( x e. ( ( A + D ) ( AP ` K ) D ) <-> E. m e. ( 0 ... ( K - 1 ) ) x = ( ( A + D ) + ( m x. D ) ) ) ) |
| 131 |
129 130
|
syld3an2 |
|- ( ( K e. NN0 /\ A e. NN /\ D e. NN ) -> ( x e. ( ( A + D ) ( AP ` K ) D ) <-> E. m e. ( 0 ... ( K - 1 ) ) x = ( ( A + D ) + ( m x. D ) ) ) ) |
| 132 |
127 131
|
bitr4d |
|- ( ( K e. NN0 /\ A e. NN /\ D e. NN ) -> ( E. n ( n e. ( ( 0 + 1 ) ... K ) /\ x = ( A + ( n x. D ) ) ) <-> x e. ( ( A + D ) ( AP ` K ) D ) ) ) |
| 133 |
40 132
|
orbi12d |
|- ( ( K e. NN0 /\ A e. NN /\ D e. NN ) -> ( ( E. n ( n = 0 /\ x = ( A + ( n x. D ) ) ) \/ E. n ( n e. ( ( 0 + 1 ) ... K ) /\ x = ( A + ( n x. D ) ) ) ) <-> ( x e. { A } \/ x e. ( ( A + D ) ( AP ` K ) D ) ) ) ) |
| 134 |
|
elun |
|- ( x e. ( { A } u. ( ( A + D ) ( AP ` K ) D ) ) <-> ( x e. { A } \/ x e. ( ( A + D ) ( AP ` K ) D ) ) ) |
| 135 |
133 134
|
bitr4di |
|- ( ( K e. NN0 /\ A e. NN /\ D e. NN ) -> ( ( E. n ( n = 0 /\ x = ( A + ( n x. D ) ) ) \/ E. n ( n e. ( ( 0 + 1 ) ... K ) /\ x = ( A + ( n x. D ) ) ) ) <-> x e. ( { A } u. ( ( A + D ) ( AP ` K ) D ) ) ) ) |
| 136 |
24 135
|
bitrd |
|- ( ( K e. NN0 /\ A e. NN /\ D e. NN ) -> ( x e. ( A ( AP ` ( K + 1 ) ) D ) <-> x e. ( { A } u. ( ( A + D ) ( AP ` K ) D ) ) ) ) |
| 137 |
136
|
eqrdv |
|- ( ( K e. NN0 /\ A e. NN /\ D e. NN ) -> ( A ( AP ` ( K + 1 ) ) D ) = ( { A } u. ( ( A + D ) ( AP ` K ) D ) ) ) |