| Step |
Hyp |
Ref |
Expression |
| 1 |
|
peano2nn0 |
|
| 2 |
|
vdwapval |
|
| 3 |
1 2
|
syl3an1 |
|
| 4 |
|
simp1 |
|
| 5 |
4
|
nn0cnd |
|
| 6 |
|
ax-1cn |
|
| 7 |
|
pncan |
|
| 8 |
5 6 7
|
sylancl |
|
| 9 |
8
|
oveq2d |
|
| 10 |
9
|
eleq2d |
|
| 11 |
|
nn0uz |
|
| 12 |
4 11
|
eleqtrdi |
|
| 13 |
|
elfzp12 |
|
| 14 |
12 13
|
syl |
|
| 15 |
10 14
|
bitrd |
|
| 16 |
15
|
anbi1d |
|
| 17 |
|
andir |
|
| 18 |
16 17
|
bitrdi |
|
| 19 |
18
|
exbidv |
|
| 20 |
|
df-rex |
|
| 21 |
|
19.43 |
|
| 22 |
21
|
bicomi |
|
| 23 |
19 20 22
|
3bitr4g |
|
| 24 |
3 23
|
bitrd |
|
| 25 |
|
nncn |
|
| 26 |
25
|
3ad2ant3 |
|
| 27 |
26
|
mul02d |
|
| 28 |
27
|
oveq2d |
|
| 29 |
|
nncn |
|
| 30 |
29
|
3ad2ant2 |
|
| 31 |
30
|
addridd |
|
| 32 |
28 31
|
eqtrd |
|
| 33 |
32
|
eqeq2d |
|
| 34 |
|
c0ex |
|
| 35 |
|
oveq1 |
|
| 36 |
35
|
oveq2d |
|
| 37 |
36
|
eqeq2d |
|
| 38 |
34 37
|
ceqsexv |
|
| 39 |
|
velsn |
|
| 40 |
33 38 39
|
3bitr4g |
|
| 41 |
|
simpr |
|
| 42 |
|
0p1e1 |
|
| 43 |
42
|
oveq1i |
|
| 44 |
41 43
|
eleqtrdi |
|
| 45 |
|
1zzd |
|
| 46 |
4
|
adantr |
|
| 47 |
46
|
nn0zd |
|
| 48 |
|
elfzelz |
|
| 49 |
48
|
adantl |
|
| 50 |
|
fzsubel |
|
| 51 |
45 47 49 45 50
|
syl22anc |
|
| 52 |
44 51
|
mpbid |
|
| 53 |
|
1m1e0 |
|
| 54 |
53
|
oveq1i |
|
| 55 |
52 54
|
eleqtrdi |
|
| 56 |
49
|
zcnd |
|
| 57 |
|
1cnd |
|
| 58 |
26
|
adantr |
|
| 59 |
56 57 58
|
subdird |
|
| 60 |
58
|
mullidd |
|
| 61 |
60
|
oveq2d |
|
| 62 |
59 61
|
eqtrd |
|
| 63 |
62
|
oveq2d |
|
| 64 |
56 58
|
mulcld |
|
| 65 |
58 64
|
pncan3d |
|
| 66 |
63 65
|
eqtr2d |
|
| 67 |
66
|
oveq2d |
|
| 68 |
30
|
adantr |
|
| 69 |
|
subcl |
|
| 70 |
56 6 69
|
sylancl |
|
| 71 |
70 58
|
mulcld |
|
| 72 |
68 58 71
|
addassd |
|
| 73 |
67 72
|
eqtr4d |
|
| 74 |
|
oveq1 |
|
| 75 |
74
|
oveq2d |
|
| 76 |
75
|
rspceeqv |
|
| 77 |
55 73 76
|
syl2anc |
|
| 78 |
|
eqeq1 |
|
| 79 |
78
|
rexbidv |
|
| 80 |
77 79
|
syl5ibrcom |
|
| 81 |
80
|
expimpd |
|
| 82 |
81
|
exlimdv |
|
| 83 |
|
simpr |
|
| 84 |
|
0zd |
|
| 85 |
4
|
adantr |
|
| 86 |
85
|
nn0zd |
|
| 87 |
|
peano2zm |
|
| 88 |
86 87
|
syl |
|
| 89 |
|
elfzelz |
|
| 90 |
89
|
adantl |
|
| 91 |
|
1zzd |
|
| 92 |
|
fzaddel |
|
| 93 |
84 88 90 91 92
|
syl22anc |
|
| 94 |
83 93
|
mpbid |
|
| 95 |
85
|
nn0cnd |
|
| 96 |
|
npcan |
|
| 97 |
95 6 96
|
sylancl |
|
| 98 |
97
|
oveq2d |
|
| 99 |
94 98
|
eleqtrd |
|
| 100 |
30
|
adantr |
|
| 101 |
26
|
adantr |
|
| 102 |
90
|
zcnd |
|
| 103 |
102 101
|
mulcld |
|
| 104 |
100 101 103
|
addassd |
|
| 105 |
|
1cnd |
|
| 106 |
102 105 101
|
adddird |
|
| 107 |
101 103
|
addcomd |
|
| 108 |
101
|
mullidd |
|
| 109 |
108
|
oveq2d |
|
| 110 |
107 109
|
eqtr4d |
|
| 111 |
106 110
|
eqtr4d |
|
| 112 |
111
|
oveq2d |
|
| 113 |
104 112
|
eqtr4d |
|
| 114 |
|
ovex |
|
| 115 |
|
eleq1 |
|
| 116 |
|
oveq1 |
|
| 117 |
116
|
oveq2d |
|
| 118 |
117
|
eqeq2d |
|
| 119 |
115 118
|
anbi12d |
|
| 120 |
114 119
|
spcev |
|
| 121 |
99 113 120
|
syl2anc |
|
| 122 |
|
eqeq1 |
|
| 123 |
122
|
anbi2d |
|
| 124 |
123
|
exbidv |
|
| 125 |
121 124
|
syl5ibrcom |
|
| 126 |
125
|
rexlimdva |
|
| 127 |
82 126
|
impbid |
|
| 128 |
|
nnaddcl |
|
| 129 |
128
|
3adant1 |
|
| 130 |
|
vdwapval |
|
| 131 |
129 130
|
syld3an2 |
|
| 132 |
127 131
|
bitr4d |
|
| 133 |
40 132
|
orbi12d |
|
| 134 |
|
elun |
|
| 135 |
133 134
|
bitr4di |
|
| 136 |
24 135
|
bitrd |
|
| 137 |
136
|
eqrdv |
|