Metamath Proof Explorer


Theorem vdwapun

Description: Remove the first element of an arithmetic progression. (Contributed by Mario Carneiro, 11-Sep-2014)

Ref Expression
Assertion vdwapun K 0 A D A AP K + 1 D = A A + D AP K D

Proof

Step Hyp Ref Expression
1 peano2nn0 K 0 K + 1 0
2 vdwapval K + 1 0 A D x A AP K + 1 D n 0 K + 1 - 1 x = A + n D
3 1 2 syl3an1 K 0 A D x A AP K + 1 D n 0 K + 1 - 1 x = A + n D
4 simp1 K 0 A D K 0
5 4 nn0cnd K 0 A D K
6 ax-1cn 1
7 pncan K 1 K + 1 - 1 = K
8 5 6 7 sylancl K 0 A D K + 1 - 1 = K
9 8 oveq2d K 0 A D 0 K + 1 - 1 = 0 K
10 9 eleq2d K 0 A D n 0 K + 1 - 1 n 0 K
11 nn0uz 0 = 0
12 4 11 eleqtrdi K 0 A D K 0
13 elfzp12 K 0 n 0 K n = 0 n 0 + 1 K
14 12 13 syl K 0 A D n 0 K n = 0 n 0 + 1 K
15 10 14 bitrd K 0 A D n 0 K + 1 - 1 n = 0 n 0 + 1 K
16 15 anbi1d K 0 A D n 0 K + 1 - 1 x = A + n D n = 0 n 0 + 1 K x = A + n D
17 andir n = 0 n 0 + 1 K x = A + n D n = 0 x = A + n D n 0 + 1 K x = A + n D
18 16 17 bitrdi K 0 A D n 0 K + 1 - 1 x = A + n D n = 0 x = A + n D n 0 + 1 K x = A + n D
19 18 exbidv K 0 A D n n 0 K + 1 - 1 x = A + n D n n = 0 x = A + n D n 0 + 1 K x = A + n D
20 df-rex n 0 K + 1 - 1 x = A + n D n n 0 K + 1 - 1 x = A + n D
21 19.43 n n = 0 x = A + n D n 0 + 1 K x = A + n D n n = 0 x = A + n D n n 0 + 1 K x = A + n D
22 21 bicomi n n = 0 x = A + n D n n 0 + 1 K x = A + n D n n = 0 x = A + n D n 0 + 1 K x = A + n D
23 19 20 22 3bitr4g K 0 A D n 0 K + 1 - 1 x = A + n D n n = 0 x = A + n D n n 0 + 1 K x = A + n D
24 3 23 bitrd K 0 A D x A AP K + 1 D n n = 0 x = A + n D n n 0 + 1 K x = A + n D
25 nncn D D
26 25 3ad2ant3 K 0 A D D
27 26 mul02d K 0 A D 0 D = 0
28 27 oveq2d K 0 A D A + 0 D = A + 0
29 nncn A A
30 29 3ad2ant2 K 0 A D A
31 30 addid1d K 0 A D A + 0 = A
32 28 31 eqtrd K 0 A D A + 0 D = A
33 32 eqeq2d K 0 A D x = A + 0 D x = A
34 c0ex 0 V
35 oveq1 n = 0 n D = 0 D
36 35 oveq2d n = 0 A + n D = A + 0 D
37 36 eqeq2d n = 0 x = A + n D x = A + 0 D
38 34 37 ceqsexv n n = 0 x = A + n D x = A + 0 D
39 velsn x A x = A
40 33 38 39 3bitr4g K 0 A D n n = 0 x = A + n D x A
41 simpr K 0 A D n 0 + 1 K n 0 + 1 K
42 0p1e1 0 + 1 = 1
43 42 oveq1i 0 + 1 K = 1 K
44 41 43 eleqtrdi K 0 A D n 0 + 1 K n 1 K
45 1zzd K 0 A D n 0 + 1 K 1
46 4 adantr K 0 A D n 0 + 1 K K 0
47 46 nn0zd K 0 A D n 0 + 1 K K
48 elfzelz n 0 + 1 K n
49 48 adantl K 0 A D n 0 + 1 K n
50 fzsubel 1 K n 1 n 1 K n 1 1 1 K 1
51 45 47 49 45 50 syl22anc K 0 A D n 0 + 1 K n 1 K n 1 1 1 K 1
52 44 51 mpbid K 0 A D n 0 + 1 K n 1 1 1 K 1
53 1m1e0 1 1 = 0
54 53 oveq1i 1 1 K 1 = 0 K 1
55 52 54 eleqtrdi K 0 A D n 0 + 1 K n 1 0 K 1
56 49 zcnd K 0 A D n 0 + 1 K n
57 1cnd K 0 A D n 0 + 1 K 1
58 26 adantr K 0 A D n 0 + 1 K D
59 56 57 58 subdird K 0 A D n 0 + 1 K n 1 D = n D 1 D
60 58 mulid2d K 0 A D n 0 + 1 K 1 D = D
61 60 oveq2d K 0 A D n 0 + 1 K n D 1 D = n D D
62 59 61 eqtrd K 0 A D n 0 + 1 K n 1 D = n D D
63 62 oveq2d K 0 A D n 0 + 1 K D + n 1 D = D + n D - D
64 56 58 mulcld K 0 A D n 0 + 1 K n D
65 58 64 pncan3d K 0 A D n 0 + 1 K D + n D - D = n D
66 63 65 eqtr2d K 0 A D n 0 + 1 K n D = D + n 1 D
67 66 oveq2d K 0 A D n 0 + 1 K A + n D = A + D + n 1 D
68 30 adantr K 0 A D n 0 + 1 K A
69 subcl n 1 n 1
70 56 6 69 sylancl K 0 A D n 0 + 1 K n 1
71 70 58 mulcld K 0 A D n 0 + 1 K n 1 D
72 68 58 71 addassd K 0 A D n 0 + 1 K A + D + n 1 D = A + D + n 1 D
73 67 72 eqtr4d K 0 A D n 0 + 1 K A + n D = A + D + n 1 D
74 oveq1 m = n 1 m D = n 1 D
75 74 oveq2d m = n 1 A + D + m D = A + D + n 1 D
76 75 rspceeqv n 1 0 K 1 A + n D = A + D + n 1 D m 0 K 1 A + n D = A + D + m D
77 55 73 76 syl2anc K 0 A D n 0 + 1 K m 0 K 1 A + n D = A + D + m D
78 eqeq1 x = A + n D x = A + D + m D A + n D = A + D + m D
79 78 rexbidv x = A + n D m 0 K 1 x = A + D + m D m 0 K 1 A + n D = A + D + m D
80 77 79 syl5ibrcom K 0 A D n 0 + 1 K x = A + n D m 0 K 1 x = A + D + m D
81 80 expimpd K 0 A D n 0 + 1 K x = A + n D m 0 K 1 x = A + D + m D
82 81 exlimdv K 0 A D n n 0 + 1 K x = A + n D m 0 K 1 x = A + D + m D
83 simpr K 0 A D m 0 K 1 m 0 K 1
84 0zd K 0 A D m 0 K 1 0
85 4 adantr K 0 A D m 0 K 1 K 0
86 85 nn0zd K 0 A D m 0 K 1 K
87 peano2zm K K 1
88 86 87 syl K 0 A D m 0 K 1 K 1
89 elfzelz m 0 K 1 m
90 89 adantl K 0 A D m 0 K 1 m
91 1zzd K 0 A D m 0 K 1 1
92 fzaddel 0 K 1 m 1 m 0 K 1 m + 1 0 + 1 K - 1 + 1
93 84 88 90 91 92 syl22anc K 0 A D m 0 K 1 m 0 K 1 m + 1 0 + 1 K - 1 + 1
94 83 93 mpbid K 0 A D m 0 K 1 m + 1 0 + 1 K - 1 + 1
95 85 nn0cnd K 0 A D m 0 K 1 K
96 npcan K 1 K - 1 + 1 = K
97 95 6 96 sylancl K 0 A D m 0 K 1 K - 1 + 1 = K
98 97 oveq2d K 0 A D m 0 K 1 0 + 1 K - 1 + 1 = 0 + 1 K
99 94 98 eleqtrd K 0 A D m 0 K 1 m + 1 0 + 1 K
100 30 adantr K 0 A D m 0 K 1 A
101 26 adantr K 0 A D m 0 K 1 D
102 90 zcnd K 0 A D m 0 K 1 m
103 102 101 mulcld K 0 A D m 0 K 1 m D
104 100 101 103 addassd K 0 A D m 0 K 1 A + D + m D = A + D + m D
105 1cnd K 0 A D m 0 K 1 1
106 102 105 101 adddird K 0 A D m 0 K 1 m + 1 D = m D + 1 D
107 101 103 addcomd K 0 A D m 0 K 1 D + m D = m D + D
108 101 mulid2d K 0 A D m 0 K 1 1 D = D
109 108 oveq2d K 0 A D m 0 K 1 m D + 1 D = m D + D
110 107 109 eqtr4d K 0 A D m 0 K 1 D + m D = m D + 1 D
111 106 110 eqtr4d K 0 A D m 0 K 1 m + 1 D = D + m D
112 111 oveq2d K 0 A D m 0 K 1 A + m + 1 D = A + D + m D
113 104 112 eqtr4d K 0 A D m 0 K 1 A + D + m D = A + m + 1 D
114 ovex m + 1 V
115 eleq1 n = m + 1 n 0 + 1 K m + 1 0 + 1 K
116 oveq1 n = m + 1 n D = m + 1 D
117 116 oveq2d n = m + 1 A + n D = A + m + 1 D
118 117 eqeq2d n = m + 1 A + D + m D = A + n D A + D + m D = A + m + 1 D
119 115 118 anbi12d n = m + 1 n 0 + 1 K A + D + m D = A + n D m + 1 0 + 1 K A + D + m D = A + m + 1 D
120 114 119 spcev m + 1 0 + 1 K A + D + m D = A + m + 1 D n n 0 + 1 K A + D + m D = A + n D
121 99 113 120 syl2anc K 0 A D m 0 K 1 n n 0 + 1 K A + D + m D = A + n D
122 eqeq1 x = A + D + m D x = A + n D A + D + m D = A + n D
123 122 anbi2d x = A + D + m D n 0 + 1 K x = A + n D n 0 + 1 K A + D + m D = A + n D
124 123 exbidv x = A + D + m D n n 0 + 1 K x = A + n D n n 0 + 1 K A + D + m D = A + n D
125 121 124 syl5ibrcom K 0 A D m 0 K 1 x = A + D + m D n n 0 + 1 K x = A + n D
126 125 rexlimdva K 0 A D m 0 K 1 x = A + D + m D n n 0 + 1 K x = A + n D
127 82 126 impbid K 0 A D n n 0 + 1 K x = A + n D m 0 K 1 x = A + D + m D
128 nnaddcl A D A + D
129 128 3adant1 K 0 A D A + D
130 vdwapval K 0 A + D D x A + D AP K D m 0 K 1 x = A + D + m D
131 129 130 syld3an2 K 0 A D x A + D AP K D m 0 K 1 x = A + D + m D
132 127 131 bitr4d K 0 A D n n 0 + 1 K x = A + n D x A + D AP K D
133 40 132 orbi12d K 0 A D n n = 0 x = A + n D n n 0 + 1 K x = A + n D x A x A + D AP K D
134 elun x A A + D AP K D x A x A + D AP K D
135 133 134 bitr4di K 0 A D n n = 0 x = A + n D n n 0 + 1 K x = A + n D x A A + D AP K D
136 24 135 bitrd K 0 A D x A AP K + 1 D x A A + D AP K D
137 136 eqrdv K 0 A D A AP K + 1 D = A A + D AP K D