Metamath Proof Explorer


Theorem vdwapid1

Description: The first element of an arithmetic progression. (Contributed by Mario Carneiro, 12-Sep-2014)

Ref Expression
Assertion vdwapid1 KADAAAPKD

Proof

Step Hyp Ref Expression
1 ssun1 AAA+DAPK1D
2 snssg AAAA+DAPK1DAAA+DAPK1D
3 2 3ad2ant2 KADAAA+DAPK1DAAA+DAPK1D
4 1 3 mpbiri KADAAA+DAPK1D
5 nncn KK
6 5 3ad2ant1 KADK
7 ax-1cn 1
8 npcan K1K-1+1=K
9 6 7 8 sylancl KADK-1+1=K
10 9 fveq2d KADAPK-1+1=APK
11 10 oveqd KADAAPK-1+1D=AAPKD
12 nnm1nn0 KK10
13 vdwapun K10ADAAPK-1+1D=AA+DAPK1D
14 12 13 syl3an1 KADAAPK-1+1D=AA+DAPK1D
15 11 14 eqtr3d KADAAPKD=AA+DAPK1D
16 4 15 eleqtrrd KADAAAPKD