Metamath Proof Explorer


Theorem vdwap0

Description: Value of a length-1 arithmetic progression. (Contributed by Mario Carneiro, 18-Aug-2014)

Ref Expression
Assertion vdwap0 A D A AP 0 D =

Proof

Step Hyp Ref Expression
1 noel ¬ m
2 1 pm2.21i m ¬ x = A + m D
3 risefall0lem 0 0 1 =
4 2 3 eleq2s m 0 0 1 ¬ x = A + m D
5 4 nrex ¬ m 0 0 1 x = A + m D
6 0nn0 0 0
7 vdwapval 0 0 A D x A AP 0 D m 0 0 1 x = A + m D
8 6 7 mp3an1 A D x A AP 0 D m 0 0 1 x = A + m D
9 5 8 mtbiri A D ¬ x A AP 0 D
10 9 eq0rdv A D A AP 0 D =