| Step | Hyp | Ref | Expression | 
						
							| 1 |  | noel |  |-  -. m e. (/) | 
						
							| 2 | 1 | pm2.21i |  |-  ( m e. (/) -> -. x = ( A + ( m x. D ) ) ) | 
						
							| 3 |  | risefall0lem |  |-  ( 0 ... ( 0 - 1 ) ) = (/) | 
						
							| 4 | 2 3 | eleq2s |  |-  ( m e. ( 0 ... ( 0 - 1 ) ) -> -. x = ( A + ( m x. D ) ) ) | 
						
							| 5 | 4 | nrex |  |-  -. E. m e. ( 0 ... ( 0 - 1 ) ) x = ( A + ( m x. D ) ) | 
						
							| 6 |  | 0nn0 |  |-  0 e. NN0 | 
						
							| 7 |  | vdwapval |  |-  ( ( 0 e. NN0 /\ A e. NN /\ D e. NN ) -> ( x e. ( A ( AP ` 0 ) D ) <-> E. m e. ( 0 ... ( 0 - 1 ) ) x = ( A + ( m x. D ) ) ) ) | 
						
							| 8 | 6 7 | mp3an1 |  |-  ( ( A e. NN /\ D e. NN ) -> ( x e. ( A ( AP ` 0 ) D ) <-> E. m e. ( 0 ... ( 0 - 1 ) ) x = ( A + ( m x. D ) ) ) ) | 
						
							| 9 | 5 8 | mtbiri |  |-  ( ( A e. NN /\ D e. NN ) -> -. x e. ( A ( AP ` 0 ) D ) ) | 
						
							| 10 | 9 | eq0rdv |  |-  ( ( A e. NN /\ D e. NN ) -> ( A ( AP ` 0 ) D ) = (/) ) |