Step |
Hyp |
Ref |
Expression |
1 |
|
noel |
|- -. m e. (/) |
2 |
1
|
pm2.21i |
|- ( m e. (/) -> -. x = ( A + ( m x. D ) ) ) |
3 |
|
risefall0lem |
|- ( 0 ... ( 0 - 1 ) ) = (/) |
4 |
2 3
|
eleq2s |
|- ( m e. ( 0 ... ( 0 - 1 ) ) -> -. x = ( A + ( m x. D ) ) ) |
5 |
4
|
nrex |
|- -. E. m e. ( 0 ... ( 0 - 1 ) ) x = ( A + ( m x. D ) ) |
6 |
|
0nn0 |
|- 0 e. NN0 |
7 |
|
vdwapval |
|- ( ( 0 e. NN0 /\ A e. NN /\ D e. NN ) -> ( x e. ( A ( AP ` 0 ) D ) <-> E. m e. ( 0 ... ( 0 - 1 ) ) x = ( A + ( m x. D ) ) ) ) |
8 |
6 7
|
mp3an1 |
|- ( ( A e. NN /\ D e. NN ) -> ( x e. ( A ( AP ` 0 ) D ) <-> E. m e. ( 0 ... ( 0 - 1 ) ) x = ( A + ( m x. D ) ) ) ) |
9 |
5 8
|
mtbiri |
|- ( ( A e. NN /\ D e. NN ) -> -. x e. ( A ( AP ` 0 ) D ) ) |
10 |
9
|
eq0rdv |
|- ( ( A e. NN /\ D e. NN ) -> ( A ( AP ` 0 ) D ) = (/) ) |