Metamath Proof Explorer


Theorem vdwap0

Description: Value of a length-1 arithmetic progression. (Contributed by Mario Carneiro, 18-Aug-2014)

Ref Expression
Assertion vdwap0 ( ( 𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ ) → ( 𝐴 ( AP ‘ 0 ) 𝐷 ) = ∅ )

Proof

Step Hyp Ref Expression
1 noel ¬ 𝑚 ∈ ∅
2 1 pm2.21i ( 𝑚 ∈ ∅ → ¬ 𝑥 = ( 𝐴 + ( 𝑚 · 𝐷 ) ) )
3 risefall0lem ( 0 ... ( 0 − 1 ) ) = ∅
4 2 3 eleq2s ( 𝑚 ∈ ( 0 ... ( 0 − 1 ) ) → ¬ 𝑥 = ( 𝐴 + ( 𝑚 · 𝐷 ) ) )
5 4 nrex ¬ ∃ 𝑚 ∈ ( 0 ... ( 0 − 1 ) ) 𝑥 = ( 𝐴 + ( 𝑚 · 𝐷 ) )
6 0nn0 0 ∈ ℕ0
7 vdwapval ( ( 0 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ ) → ( 𝑥 ∈ ( 𝐴 ( AP ‘ 0 ) 𝐷 ) ↔ ∃ 𝑚 ∈ ( 0 ... ( 0 − 1 ) ) 𝑥 = ( 𝐴 + ( 𝑚 · 𝐷 ) ) ) )
8 6 7 mp3an1 ( ( 𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ ) → ( 𝑥 ∈ ( 𝐴 ( AP ‘ 0 ) 𝐷 ) ↔ ∃ 𝑚 ∈ ( 0 ... ( 0 − 1 ) ) 𝑥 = ( 𝐴 + ( 𝑚 · 𝐷 ) ) ) )
9 5 8 mtbiri ( ( 𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ ) → ¬ 𝑥 ∈ ( 𝐴 ( AP ‘ 0 ) 𝐷 ) )
10 9 eq0rdv ( ( 𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ ) → ( 𝐴 ( AP ‘ 0 ) 𝐷 ) = ∅ )