| Step | Hyp | Ref | Expression | 
						
							| 1 |  | noel | ⊢ ¬  𝑚  ∈  ∅ | 
						
							| 2 | 1 | pm2.21i | ⊢ ( 𝑚  ∈  ∅  →  ¬  𝑥  =  ( 𝐴  +  ( 𝑚  ·  𝐷 ) ) ) | 
						
							| 3 |  | risefall0lem | ⊢ ( 0 ... ( 0  −  1 ) )  =  ∅ | 
						
							| 4 | 2 3 | eleq2s | ⊢ ( 𝑚  ∈  ( 0 ... ( 0  −  1 ) )  →  ¬  𝑥  =  ( 𝐴  +  ( 𝑚  ·  𝐷 ) ) ) | 
						
							| 5 | 4 | nrex | ⊢ ¬  ∃ 𝑚  ∈  ( 0 ... ( 0  −  1 ) ) 𝑥  =  ( 𝐴  +  ( 𝑚  ·  𝐷 ) ) | 
						
							| 6 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 7 |  | vdwapval | ⊢ ( ( 0  ∈  ℕ0  ∧  𝐴  ∈  ℕ  ∧  𝐷  ∈  ℕ )  →  ( 𝑥  ∈  ( 𝐴 ( AP ‘ 0 ) 𝐷 )  ↔  ∃ 𝑚  ∈  ( 0 ... ( 0  −  1 ) ) 𝑥  =  ( 𝐴  +  ( 𝑚  ·  𝐷 ) ) ) ) | 
						
							| 8 | 6 7 | mp3an1 | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐷  ∈  ℕ )  →  ( 𝑥  ∈  ( 𝐴 ( AP ‘ 0 ) 𝐷 )  ↔  ∃ 𝑚  ∈  ( 0 ... ( 0  −  1 ) ) 𝑥  =  ( 𝐴  +  ( 𝑚  ·  𝐷 ) ) ) ) | 
						
							| 9 | 5 8 | mtbiri | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐷  ∈  ℕ )  →  ¬  𝑥  ∈  ( 𝐴 ( AP ‘ 0 ) 𝐷 ) ) | 
						
							| 10 | 9 | eq0rdv | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐷  ∈  ℕ )  →  ( 𝐴 ( AP ‘ 0 ) 𝐷 )  =  ∅ ) |