Step |
Hyp |
Ref |
Expression |
1 |
|
noel |
⊢ ¬ 𝑚 ∈ ∅ |
2 |
1
|
pm2.21i |
⊢ ( 𝑚 ∈ ∅ → ¬ 𝑥 = ( 𝐴 + ( 𝑚 · 𝐷 ) ) ) |
3 |
|
risefall0lem |
⊢ ( 0 ... ( 0 − 1 ) ) = ∅ |
4 |
2 3
|
eleq2s |
⊢ ( 𝑚 ∈ ( 0 ... ( 0 − 1 ) ) → ¬ 𝑥 = ( 𝐴 + ( 𝑚 · 𝐷 ) ) ) |
5 |
4
|
nrex |
⊢ ¬ ∃ 𝑚 ∈ ( 0 ... ( 0 − 1 ) ) 𝑥 = ( 𝐴 + ( 𝑚 · 𝐷 ) ) |
6 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
7 |
|
vdwapval |
⊢ ( ( 0 ∈ ℕ0 ∧ 𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ ) → ( 𝑥 ∈ ( 𝐴 ( AP ‘ 0 ) 𝐷 ) ↔ ∃ 𝑚 ∈ ( 0 ... ( 0 − 1 ) ) 𝑥 = ( 𝐴 + ( 𝑚 · 𝐷 ) ) ) ) |
8 |
6 7
|
mp3an1 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ ) → ( 𝑥 ∈ ( 𝐴 ( AP ‘ 0 ) 𝐷 ) ↔ ∃ 𝑚 ∈ ( 0 ... ( 0 − 1 ) ) 𝑥 = ( 𝐴 + ( 𝑚 · 𝐷 ) ) ) ) |
9 |
5 8
|
mtbiri |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ ) → ¬ 𝑥 ∈ ( 𝐴 ( AP ‘ 0 ) 𝐷 ) ) |
10 |
9
|
eq0rdv |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ ) → ( 𝐴 ( AP ‘ 0 ) 𝐷 ) = ∅ ) |