| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1e0p1 | ⊢ 1  =  ( 0  +  1 ) | 
						
							| 2 | 1 | fveq2i | ⊢ ( AP ‘ 1 )  =  ( AP ‘ ( 0  +  1 ) ) | 
						
							| 3 | 2 | oveqi | ⊢ ( 𝐴 ( AP ‘ 1 ) 𝐷 )  =  ( 𝐴 ( AP ‘ ( 0  +  1 ) ) 𝐷 ) | 
						
							| 4 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 5 |  | vdwapun | ⊢ ( ( 0  ∈  ℕ0  ∧  𝐴  ∈  ℕ  ∧  𝐷  ∈  ℕ )  →  ( 𝐴 ( AP ‘ ( 0  +  1 ) ) 𝐷 )  =  ( { 𝐴 }  ∪  ( ( 𝐴  +  𝐷 ) ( AP ‘ 0 ) 𝐷 ) ) ) | 
						
							| 6 | 4 5 | mp3an1 | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐷  ∈  ℕ )  →  ( 𝐴 ( AP ‘ ( 0  +  1 ) ) 𝐷 )  =  ( { 𝐴 }  ∪  ( ( 𝐴  +  𝐷 ) ( AP ‘ 0 ) 𝐷 ) ) ) | 
						
							| 7 | 3 6 | eqtrid | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐷  ∈  ℕ )  →  ( 𝐴 ( AP ‘ 1 ) 𝐷 )  =  ( { 𝐴 }  ∪  ( ( 𝐴  +  𝐷 ) ( AP ‘ 0 ) 𝐷 ) ) ) | 
						
							| 8 |  | nnaddcl | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐷  ∈  ℕ )  →  ( 𝐴  +  𝐷 )  ∈  ℕ ) | 
						
							| 9 |  | vdwap0 | ⊢ ( ( ( 𝐴  +  𝐷 )  ∈  ℕ  ∧  𝐷  ∈  ℕ )  →  ( ( 𝐴  +  𝐷 ) ( AP ‘ 0 ) 𝐷 )  =  ∅ ) | 
						
							| 10 | 8 9 | sylancom | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐷  ∈  ℕ )  →  ( ( 𝐴  +  𝐷 ) ( AP ‘ 0 ) 𝐷 )  =  ∅ ) | 
						
							| 11 | 10 | uneq2d | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐷  ∈  ℕ )  →  ( { 𝐴 }  ∪  ( ( 𝐴  +  𝐷 ) ( AP ‘ 0 ) 𝐷 ) )  =  ( { 𝐴 }  ∪  ∅ ) ) | 
						
							| 12 |  | un0 | ⊢ ( { 𝐴 }  ∪  ∅ )  =  { 𝐴 } | 
						
							| 13 | 11 12 | eqtrdi | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐷  ∈  ℕ )  →  ( { 𝐴 }  ∪  ( ( 𝐴  +  𝐷 ) ( AP ‘ 0 ) 𝐷 ) )  =  { 𝐴 } ) | 
						
							| 14 | 7 13 | eqtrd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐷  ∈  ℕ )  →  ( 𝐴 ( AP ‘ 1 ) 𝐷 )  =  { 𝐴 } ) |