Metamath Proof Explorer


Theorem vdwap1

Description: Value of a length-1 arithmetic progression. (Contributed by Mario Carneiro, 18-Aug-2014)

Ref Expression
Assertion vdwap1 A D A AP 1 D = A

Proof

Step Hyp Ref Expression
1 1e0p1 1 = 0 + 1
2 1 fveq2i AP 1 = AP 0 + 1
3 2 oveqi A AP 1 D = A AP 0 + 1 D
4 0nn0 0 0
5 vdwapun 0 0 A D A AP 0 + 1 D = A A + D AP 0 D
6 4 5 mp3an1 A D A AP 0 + 1 D = A A + D AP 0 D
7 3 6 eqtrid A D A AP 1 D = A A + D AP 0 D
8 nnaddcl A D A + D
9 vdwap0 A + D D A + D AP 0 D =
10 8 9 sylancom A D A + D AP 0 D =
11 10 uneq2d A D A A + D AP 0 D = A
12 un0 A = A
13 11 12 eqtrdi A D A A + D AP 0 D = A
14 7 13 eqtrd A D A AP 1 D = A