Metamath Proof Explorer


Theorem vdwap1

Description: Value of a length-1 arithmetic progression. (Contributed by Mario Carneiro, 18-Aug-2014)

Ref Expression
Assertion vdwap1 ADAAP1D=A

Proof

Step Hyp Ref Expression
1 1e0p1 1=0+1
2 1 fveq2i AP1=AP0+1
3 2 oveqi AAP1D=AAP0+1D
4 0nn0 00
5 vdwapun 00ADAAP0+1D=AA+DAP0D
6 4 5 mp3an1 ADAAP0+1D=AA+DAP0D
7 3 6 eqtrid ADAAP1D=AA+DAP0D
8 nnaddcl ADA+D
9 vdwap0 A+DDA+DAP0D=
10 8 9 sylancom ADA+DAP0D=
11 10 uneq2d ADAA+DAP0D=A
12 un0 A=A
13 11 12 eqtrdi ADAA+DAP0D=A
14 7 13 eqtrd ADAAP1D=A