Metamath Proof Explorer


Theorem vdwmc

Description: The predicate " The <. R , N >. -coloring F contains a monochromatic AP of length K ". (Contributed by Mario Carneiro, 18-Aug-2014)

Ref Expression
Hypotheses vdwmc.1 XV
vdwmc.2 φK0
vdwmc.3 φF:XR
Assertion vdwmc φKMonoAPFcadaAPKdF-1c

Proof

Step Hyp Ref Expression
1 vdwmc.1 XV
2 vdwmc.2 φK0
3 vdwmc.3 φF:XR
4 fex F:XRXVFV
5 3 1 4 sylancl φFV
6 fveq2 k=KAPk=APK
7 6 rneqd k=KranAPk=ranAPK
8 cnveq f=Ff-1=F-1
9 8 imaeq1d f=Ff-1c=F-1c
10 9 pweqd f=F𝒫f-1c=𝒫F-1c
11 7 10 ineqan12d k=Kf=FranAPk𝒫f-1c=ranAPK𝒫F-1c
12 11 neeq1d k=Kf=FranAPk𝒫f-1cranAPK𝒫F-1c
13 12 exbidv k=Kf=FcranAPk𝒫f-1ccranAPK𝒫F-1c
14 df-vdwmc MonoAP=kf|cranAPk𝒫f-1c
15 13 14 brabga K0FVKMonoAPFcranAPK𝒫F-1c
16 2 5 15 syl2anc φKMonoAPFcranAPK𝒫F-1c
17 vdwapf K0APK:×𝒫
18 ffn APK:×𝒫APKFn×
19 velpw z𝒫F-1czF-1c
20 sseq1 z=APKwzF-1cAPKwF-1c
21 19 20 bitrid z=APKwz𝒫F-1cAPKwF-1c
22 21 rexrn APKFn×zranAPKz𝒫F-1cw×APKwF-1c
23 2 17 18 22 4syl φzranAPKz𝒫F-1cw×APKwF-1c
24 elin zranAPK𝒫F-1czranAPKz𝒫F-1c
25 24 exbii zzranAPK𝒫F-1czzranAPKz𝒫F-1c
26 n0 ranAPK𝒫F-1czzranAPK𝒫F-1c
27 df-rex zranAPKz𝒫F-1czzranAPKz𝒫F-1c
28 25 26 27 3bitr4ri zranAPKz𝒫F-1cranAPK𝒫F-1c
29 fveq2 w=adAPKw=APKad
30 df-ov aAPKd=APKad
31 29 30 eqtr4di w=adAPKw=aAPKd
32 31 sseq1d w=adAPKwF-1caAPKdF-1c
33 32 rexxp w×APKwF-1cadaAPKdF-1c
34 23 28 33 3bitr3g φranAPK𝒫F-1cadaAPKdF-1c
35 34 exbidv φcranAPK𝒫F-1ccadaAPKdF-1c
36 16 35 bitrd φKMonoAPFcadaAPKdF-1c