Step |
Hyp |
Ref |
Expression |
1 |
|
vdwmc.1 |
|
2 |
|
vdwmc.2 |
|
3 |
|
vdwmc.3 |
|
4 |
|
vdwmc2.4 |
|
5 |
1 2 3
|
vdwmc |
|
6 |
|
vdwapid1 |
|
7 |
6
|
ne0d |
|
8 |
7
|
3expb |
|
9 |
8
|
adantll |
|
10 |
|
ssn0 |
|
11 |
10
|
expcom |
|
12 |
9 11
|
syl |
|
13 |
|
disjsn |
|
14 |
3
|
adantr |
|
15 |
|
fimacnvdisj |
|
16 |
15
|
ex |
|
17 |
14 16
|
syl |
|
18 |
17
|
adantr |
|
19 |
13 18
|
syl5bir |
|
20 |
19
|
necon1ad |
|
21 |
12 20
|
syld |
|
22 |
21
|
rexlimdvva |
|
23 |
22
|
pm4.71rd |
|
24 |
23
|
exbidv |
|
25 |
|
df-rex |
|
26 |
24 25
|
bitr4di |
|
27 |
3 4
|
ffvelrnd |
|
28 |
27
|
ne0d |
|
29 |
|
1nn |
|
30 |
29
|
ne0ii |
|
31 |
|
simpllr |
|
32 |
31
|
fveq2d |
|
33 |
32
|
oveqd |
|
34 |
|
vdwap0 |
|
35 |
34
|
adantll |
|
36 |
33 35
|
eqtrd |
|
37 |
|
0ss |
|
38 |
36 37
|
eqsstrdi |
|
39 |
38
|
ralrimiva |
|
40 |
|
r19.2z |
|
41 |
30 39 40
|
sylancr |
|
42 |
41
|
ralrimiva |
|
43 |
|
r19.2z |
|
44 |
30 42 43
|
sylancr |
|
45 |
44
|
ralrimivw |
|
46 |
|
r19.2z |
|
47 |
28 45 46
|
syl2an2r |
|
48 |
|
rexex |
|
49 |
47 48
|
syl |
|
50 |
49 47
|
2thd |
|
51 |
|
elnn0 |
|
52 |
2 51
|
sylib |
|
53 |
26 50 52
|
mpjaodan |
|
54 |
|
vdwapval |
|
55 |
54
|
3expb |
|
56 |
2 55
|
sylan |
|
57 |
56
|
imbi1d |
|
58 |
57
|
albidv |
|
59 |
|
dfss2 |
|
60 |
|
ralcom4 |
|
61 |
|
ovex |
|
62 |
|
eleq1 |
|
63 |
61 62
|
ceqsalv |
|
64 |
63
|
ralbii |
|
65 |
|
r19.23v |
|
66 |
65
|
albii |
|
67 |
60 64 66
|
3bitr3i |
|
68 |
58 59 67
|
3bitr4g |
|
69 |
68
|
2rexbidva |
|
70 |
69
|
rexbidv |
|
71 |
5 53 70
|
3bitrd |
|