| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vdwmc.1 |
|
| 2 |
|
vdwmc.2 |
|
| 3 |
|
vdwmc.3 |
|
| 4 |
|
vdwmc2.4 |
|
| 5 |
1 2 3
|
vdwmc |
|
| 6 |
|
vdwapid1 |
|
| 7 |
6
|
ne0d |
|
| 8 |
7
|
3expb |
|
| 9 |
8
|
adantll |
|
| 10 |
|
ssn0 |
|
| 11 |
10
|
expcom |
|
| 12 |
9 11
|
syl |
|
| 13 |
|
disjsn |
|
| 14 |
3
|
adantr |
|
| 15 |
|
fimacnvdisj |
|
| 16 |
15
|
ex |
|
| 17 |
14 16
|
syl |
|
| 18 |
17
|
adantr |
|
| 19 |
13 18
|
biimtrrid |
|
| 20 |
19
|
necon1ad |
|
| 21 |
12 20
|
syld |
|
| 22 |
21
|
rexlimdvva |
|
| 23 |
22
|
pm4.71rd |
|
| 24 |
23
|
exbidv |
|
| 25 |
|
df-rex |
|
| 26 |
24 25
|
bitr4di |
|
| 27 |
3 4
|
ffvelcdmd |
|
| 28 |
27
|
ne0d |
|
| 29 |
|
1nn |
|
| 30 |
29
|
ne0ii |
|
| 31 |
|
simpllr |
|
| 32 |
31
|
fveq2d |
|
| 33 |
32
|
oveqd |
|
| 34 |
|
vdwap0 |
|
| 35 |
34
|
adantll |
|
| 36 |
33 35
|
eqtrd |
|
| 37 |
|
0ss |
|
| 38 |
36 37
|
eqsstrdi |
|
| 39 |
38
|
ralrimiva |
|
| 40 |
|
r19.2z |
|
| 41 |
30 39 40
|
sylancr |
|
| 42 |
41
|
ralrimiva |
|
| 43 |
|
r19.2z |
|
| 44 |
30 42 43
|
sylancr |
|
| 45 |
44
|
ralrimivw |
|
| 46 |
|
r19.2z |
|
| 47 |
28 45 46
|
syl2an2r |
|
| 48 |
|
rexex |
|
| 49 |
47 48
|
syl |
|
| 50 |
49 47
|
2thd |
|
| 51 |
|
elnn0 |
|
| 52 |
2 51
|
sylib |
|
| 53 |
26 50 52
|
mpjaodan |
|
| 54 |
|
vdwapval |
|
| 55 |
54
|
3expb |
|
| 56 |
2 55
|
sylan |
|
| 57 |
56
|
imbi1d |
|
| 58 |
57
|
albidv |
|
| 59 |
|
df-ss |
|
| 60 |
|
ralcom4 |
|
| 61 |
|
ovex |
|
| 62 |
|
eleq1 |
|
| 63 |
61 62
|
ceqsalv |
|
| 64 |
63
|
ralbii |
|
| 65 |
|
r19.23v |
|
| 66 |
65
|
albii |
|
| 67 |
60 64 66
|
3bitr3i |
|
| 68 |
58 59 67
|
3bitr4g |
|
| 69 |
68
|
2rexbidva |
|
| 70 |
69
|
rexbidv |
|
| 71 |
5 53 70
|
3bitrd |
|