Description: Expand out the definition of an arithmetic progression. (Contributed by Mario Carneiro, 18-Aug-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | vdwmc.1 | |
|
vdwmc.2 | |
||
vdwmc.3 | |
||
vdwmc2.4 | |
||
Assertion | vdwmc2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vdwmc.1 | |
|
2 | vdwmc.2 | |
|
3 | vdwmc.3 | |
|
4 | vdwmc2.4 | |
|
5 | 1 2 3 | vdwmc | |
6 | vdwapid1 | |
|
7 | 6 | ne0d | |
8 | 7 | 3expb | |
9 | 8 | adantll | |
10 | ssn0 | |
|
11 | 10 | expcom | |
12 | 9 11 | syl | |
13 | disjsn | |
|
14 | 3 | adantr | |
15 | fimacnvdisj | |
|
16 | 15 | ex | |
17 | 14 16 | syl | |
18 | 17 | adantr | |
19 | 13 18 | biimtrrid | |
20 | 19 | necon1ad | |
21 | 12 20 | syld | |
22 | 21 | rexlimdvva | |
23 | 22 | pm4.71rd | |
24 | 23 | exbidv | |
25 | df-rex | |
|
26 | 24 25 | bitr4di | |
27 | 3 4 | ffvelcdmd | |
28 | 27 | ne0d | |
29 | 1nn | |
|
30 | 29 | ne0ii | |
31 | simpllr | |
|
32 | 31 | fveq2d | |
33 | 32 | oveqd | |
34 | vdwap0 | |
|
35 | 34 | adantll | |
36 | 33 35 | eqtrd | |
37 | 0ss | |
|
38 | 36 37 | eqsstrdi | |
39 | 38 | ralrimiva | |
40 | r19.2z | |
|
41 | 30 39 40 | sylancr | |
42 | 41 | ralrimiva | |
43 | r19.2z | |
|
44 | 30 42 43 | sylancr | |
45 | 44 | ralrimivw | |
46 | r19.2z | |
|
47 | 28 45 46 | syl2an2r | |
48 | rexex | |
|
49 | 47 48 | syl | |
50 | 49 47 | 2thd | |
51 | elnn0 | |
|
52 | 2 51 | sylib | |
53 | 26 50 52 | mpjaodan | |
54 | vdwapval | |
|
55 | 54 | 3expb | |
56 | 2 55 | sylan | |
57 | 56 | imbi1d | |
58 | 57 | albidv | |
59 | dfss2 | |
|
60 | ralcom4 | |
|
61 | ovex | |
|
62 | eleq1 | |
|
63 | 61 62 | ceqsalv | |
64 | 63 | ralbii | |
65 | r19.23v | |
|
66 | 65 | albii | |
67 | 60 64 66 | 3bitr3i | |
68 | 58 59 67 | 3bitr4g | |
69 | 68 | 2rexbidva | |
70 | 69 | rexbidv | |
71 | 5 53 70 | 3bitrd | |