Metamath Proof Explorer


Theorem vdwmc2

Description: Expand out the definition of an arithmetic progression. (Contributed by Mario Carneiro, 18-Aug-2014)

Ref Expression
Hypotheses vdwmc.1 XV
vdwmc.2 φK0
vdwmc.3 φF:XR
vdwmc2.4 φAX
Assertion vdwmc2 φKMonoAPFcRadm0K1a+mdF-1c

Proof

Step Hyp Ref Expression
1 vdwmc.1 XV
2 vdwmc.2 φK0
3 vdwmc.3 φF:XR
4 vdwmc2.4 φAX
5 1 2 3 vdwmc φKMonoAPFcadaAPKdF-1c
6 vdwapid1 KadaaAPKd
7 6 ne0d KadaAPKd
8 7 3expb KadaAPKd
9 8 adantll φKadaAPKd
10 ssn0 aAPKdF-1caAPKdF-1c
11 10 expcom aAPKdaAPKdF-1cF-1c
12 9 11 syl φKadaAPKdF-1cF-1c
13 disjsn Rc=¬cR
14 3 adantr φKF:XR
15 fimacnvdisj F:XRRc=F-1c=
16 15 ex F:XRRc=F-1c=
17 14 16 syl φKRc=F-1c=
18 17 adantr φKadRc=F-1c=
19 13 18 biimtrrid φKad¬cRF-1c=
20 19 necon1ad φKadF-1ccR
21 12 20 syld φKadaAPKdF-1ccR
22 21 rexlimdvva φKadaAPKdF-1ccR
23 22 pm4.71rd φKadaAPKdF-1ccRadaAPKdF-1c
24 23 exbidv φKcadaAPKdF-1cccRadaAPKdF-1c
25 df-rex cRadaAPKdF-1cccRadaAPKdF-1c
26 24 25 bitr4di φKcadaAPKdF-1ccRadaAPKdF-1c
27 3 4 ffvelcdmd φFAR
28 27 ne0d φR
29 1nn 1
30 29 ne0ii
31 simpllr φK=0adK=0
32 31 fveq2d φK=0adAPK=AP0
33 32 oveqd φK=0adaAPKd=aAP0d
34 vdwap0 adaAP0d=
35 34 adantll φK=0adaAP0d=
36 33 35 eqtrd φK=0adaAPKd=
37 0ss F-1c
38 36 37 eqsstrdi φK=0adaAPKdF-1c
39 38 ralrimiva φK=0adaAPKdF-1c
40 r19.2z daAPKdF-1cdaAPKdF-1c
41 30 39 40 sylancr φK=0adaAPKdF-1c
42 41 ralrimiva φK=0adaAPKdF-1c
43 r19.2z adaAPKdF-1cadaAPKdF-1c
44 30 42 43 sylancr φK=0adaAPKdF-1c
45 44 ralrimivw φK=0cRadaAPKdF-1c
46 r19.2z RcRadaAPKdF-1ccRadaAPKdF-1c
47 28 45 46 syl2an2r φK=0cRadaAPKdF-1c
48 rexex cRadaAPKdF-1ccadaAPKdF-1c
49 47 48 syl φK=0cadaAPKdF-1c
50 49 47 2thd φK=0cadaAPKdF-1ccRadaAPKdF-1c
51 elnn0 K0KK=0
52 2 51 sylib φKK=0
53 26 50 52 mpjaodan φcadaAPKdF-1ccRadaAPKdF-1c
54 vdwapval K0adxaAPKdm0K1x=a+md
55 54 3expb K0adxaAPKdm0K1x=a+md
56 2 55 sylan φadxaAPKdm0K1x=a+md
57 56 imbi1d φadxaAPKdxF-1cm0K1x=a+mdxF-1c
58 57 albidv φadxxaAPKdxF-1cxm0K1x=a+mdxF-1c
59 dfss2 aAPKdF-1cxxaAPKdxF-1c
60 ralcom4 m0K1xx=a+mdxF-1cxm0K1x=a+mdxF-1c
61 ovex a+mdV
62 eleq1 x=a+mdxF-1ca+mdF-1c
63 61 62 ceqsalv xx=a+mdxF-1ca+mdF-1c
64 63 ralbii m0K1xx=a+mdxF-1cm0K1a+mdF-1c
65 r19.23v m0K1x=a+mdxF-1cm0K1x=a+mdxF-1c
66 65 albii xm0K1x=a+mdxF-1cxm0K1x=a+mdxF-1c
67 60 64 66 3bitr3i m0K1a+mdF-1cxm0K1x=a+mdxF-1c
68 58 59 67 3bitr4g φadaAPKdF-1cm0K1a+mdF-1c
69 68 2rexbidva φadaAPKdF-1cadm0K1a+mdF-1c
70 69 rexbidv φcRadaAPKdF-1ccRadm0K1a+mdF-1c
71 5 53 70 3bitrd φKMonoAPFcRadm0K1a+mdF-1c