Metamath Proof Explorer


Definition df-vdwmc

Description: Define the "contains a monochromatic AP" predicate. (Contributed by Mario Carneiro, 18-Aug-2014)

Ref Expression
Assertion df-vdwmc MonoAP = k f | c ran AP k 𝒫 f -1 c

Detailed syntax breakdown

Step Hyp Ref Expression
0 cvdwm class MonoAP
1 vk setvar k
2 vf setvar f
3 vc setvar c
4 cvdwa class AP
5 1 cv setvar k
6 5 4 cfv class AP k
7 6 crn class ran AP k
8 2 cv setvar f
9 8 ccnv class f -1
10 3 cv setvar c
11 10 csn class c
12 9 11 cima class f -1 c
13 12 cpw class 𝒫 f -1 c
14 7 13 cin class ran AP k 𝒫 f -1 c
15 c0 class
16 14 15 wne wff ran AP k 𝒫 f -1 c
17 16 3 wex wff c ran AP k 𝒫 f -1 c
18 17 1 2 copab class k f | c ran AP k 𝒫 f -1 c
19 0 18 wceq wff MonoAP = k f | c ran AP k 𝒫 f -1 c