Metamath Proof Explorer


Definition df-vdwpc

Description: Define the "contains a polychromatic collection of APs" predicate. See vdwpc for more information. (Contributed by Mario Carneiro, 18-Aug-2014)

Ref Expression
Assertion df-vdwpc PolyAP = m k f | a d 1 m i 1 m a + d i AP k d i f -1 f a + d i ran i 1 m f a + d i = m

Detailed syntax breakdown

Step Hyp Ref Expression
0 cvdwp class PolyAP
1 vm setvar m
2 vk setvar k
3 vf setvar f
4 va setvar a
5 cn class
6 vd setvar d
7 cmap class 𝑚
8 c1 class 1
9 cfz class
10 1 cv setvar m
11 8 10 9 co class 1 m
12 5 11 7 co class 1 m
13 vi setvar i
14 4 cv setvar a
15 caddc class +
16 6 cv setvar d
17 13 cv setvar i
18 17 16 cfv class d i
19 14 18 15 co class a + d i
20 cvdwa class AP
21 2 cv setvar k
22 21 20 cfv class AP k
23 19 18 22 co class a + d i AP k d i
24 3 cv setvar f
25 24 ccnv class f -1
26 19 24 cfv class f a + d i
27 26 csn class f a + d i
28 25 27 cima class f -1 f a + d i
29 23 28 wss wff a + d i AP k d i f -1 f a + d i
30 29 13 11 wral wff i 1 m a + d i AP k d i f -1 f a + d i
31 chash class .
32 13 11 26 cmpt class i 1 m f a + d i
33 32 crn class ran i 1 m f a + d i
34 33 31 cfv class ran i 1 m f a + d i
35 34 10 wceq wff ran i 1 m f a + d i = m
36 30 35 wa wff i 1 m a + d i AP k d i f -1 f a + d i ran i 1 m f a + d i = m
37 36 6 12 wrex wff d 1 m i 1 m a + d i AP k d i f -1 f a + d i ran i 1 m f a + d i = m
38 37 4 5 wrex wff a d 1 m i 1 m a + d i AP k d i f -1 f a + d i ran i 1 m f a + d i = m
39 38 1 2 3 coprab class m k f | a d 1 m i 1 m a + d i AP k d i f -1 f a + d i ran i 1 m f a + d i = m
40 0 39 wceq wff PolyAP = m k f | a d 1 m i 1 m a + d i AP k d i f -1 f a + d i ran i 1 m f a + d i = m