| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cvdwp |
|- PolyAP |
| 1 |
|
vm |
|- m |
| 2 |
|
vk |
|- k |
| 3 |
|
vf |
|- f |
| 4 |
|
va |
|- a |
| 5 |
|
cn |
|- NN |
| 6 |
|
vd |
|- d |
| 7 |
|
cmap |
|- ^m |
| 8 |
|
c1 |
|- 1 |
| 9 |
|
cfz |
|- ... |
| 10 |
1
|
cv |
|- m |
| 11 |
8 10 9
|
co |
|- ( 1 ... m ) |
| 12 |
5 11 7
|
co |
|- ( NN ^m ( 1 ... m ) ) |
| 13 |
|
vi |
|- i |
| 14 |
4
|
cv |
|- a |
| 15 |
|
caddc |
|- + |
| 16 |
6
|
cv |
|- d |
| 17 |
13
|
cv |
|- i |
| 18 |
17 16
|
cfv |
|- ( d ` i ) |
| 19 |
14 18 15
|
co |
|- ( a + ( d ` i ) ) |
| 20 |
|
cvdwa |
|- AP |
| 21 |
2
|
cv |
|- k |
| 22 |
21 20
|
cfv |
|- ( AP ` k ) |
| 23 |
19 18 22
|
co |
|- ( ( a + ( d ` i ) ) ( AP ` k ) ( d ` i ) ) |
| 24 |
3
|
cv |
|- f |
| 25 |
24
|
ccnv |
|- `' f |
| 26 |
19 24
|
cfv |
|- ( f ` ( a + ( d ` i ) ) ) |
| 27 |
26
|
csn |
|- { ( f ` ( a + ( d ` i ) ) ) } |
| 28 |
25 27
|
cima |
|- ( `' f " { ( f ` ( a + ( d ` i ) ) ) } ) |
| 29 |
23 28
|
wss |
|- ( ( a + ( d ` i ) ) ( AP ` k ) ( d ` i ) ) C_ ( `' f " { ( f ` ( a + ( d ` i ) ) ) } ) |
| 30 |
29 13 11
|
wral |
|- A. i e. ( 1 ... m ) ( ( a + ( d ` i ) ) ( AP ` k ) ( d ` i ) ) C_ ( `' f " { ( f ` ( a + ( d ` i ) ) ) } ) |
| 31 |
|
chash |
|- # |
| 32 |
13 11 26
|
cmpt |
|- ( i e. ( 1 ... m ) |-> ( f ` ( a + ( d ` i ) ) ) ) |
| 33 |
32
|
crn |
|- ran ( i e. ( 1 ... m ) |-> ( f ` ( a + ( d ` i ) ) ) ) |
| 34 |
33 31
|
cfv |
|- ( # ` ran ( i e. ( 1 ... m ) |-> ( f ` ( a + ( d ` i ) ) ) ) ) |
| 35 |
34 10
|
wceq |
|- ( # ` ran ( i e. ( 1 ... m ) |-> ( f ` ( a + ( d ` i ) ) ) ) ) = m |
| 36 |
30 35
|
wa |
|- ( A. i e. ( 1 ... m ) ( ( a + ( d ` i ) ) ( AP ` k ) ( d ` i ) ) C_ ( `' f " { ( f ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... m ) |-> ( f ` ( a + ( d ` i ) ) ) ) ) = m ) |
| 37 |
36 6 12
|
wrex |
|- E. d e. ( NN ^m ( 1 ... m ) ) ( A. i e. ( 1 ... m ) ( ( a + ( d ` i ) ) ( AP ` k ) ( d ` i ) ) C_ ( `' f " { ( f ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... m ) |-> ( f ` ( a + ( d ` i ) ) ) ) ) = m ) |
| 38 |
37 4 5
|
wrex |
|- E. a e. NN E. d e. ( NN ^m ( 1 ... m ) ) ( A. i e. ( 1 ... m ) ( ( a + ( d ` i ) ) ( AP ` k ) ( d ` i ) ) C_ ( `' f " { ( f ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... m ) |-> ( f ` ( a + ( d ` i ) ) ) ) ) = m ) |
| 39 |
38 1 2 3
|
coprab |
|- { <. <. m , k >. , f >. | E. a e. NN E. d e. ( NN ^m ( 1 ... m ) ) ( A. i e. ( 1 ... m ) ( ( a + ( d ` i ) ) ( AP ` k ) ( d ` i ) ) C_ ( `' f " { ( f ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... m ) |-> ( f ` ( a + ( d ` i ) ) ) ) ) = m ) } |
| 40 |
0 39
|
wceq |
|- PolyAP = { <. <. m , k >. , f >. | E. a e. NN E. d e. ( NN ^m ( 1 ... m ) ) ( A. i e. ( 1 ... m ) ( ( a + ( d ` i ) ) ( AP ` k ) ( d ` i ) ) C_ ( `' f " { ( f ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... m ) |-> ( f ` ( a + ( d ` i ) ) ) ) ) = m ) } |