| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cvdwp |  |-  PolyAP | 
						
							| 1 |  | vm |  |-  m | 
						
							| 2 |  | vk |  |-  k | 
						
							| 3 |  | vf |  |-  f | 
						
							| 4 |  | va |  |-  a | 
						
							| 5 |  | cn |  |-  NN | 
						
							| 6 |  | vd |  |-  d | 
						
							| 7 |  | cmap |  |-  ^m | 
						
							| 8 |  | c1 |  |-  1 | 
						
							| 9 |  | cfz |  |-  ... | 
						
							| 10 | 1 | cv |  |-  m | 
						
							| 11 | 8 10 9 | co |  |-  ( 1 ... m ) | 
						
							| 12 | 5 11 7 | co |  |-  ( NN ^m ( 1 ... m ) ) | 
						
							| 13 |  | vi |  |-  i | 
						
							| 14 | 4 | cv |  |-  a | 
						
							| 15 |  | caddc |  |-  + | 
						
							| 16 | 6 | cv |  |-  d | 
						
							| 17 | 13 | cv |  |-  i | 
						
							| 18 | 17 16 | cfv |  |-  ( d ` i ) | 
						
							| 19 | 14 18 15 | co |  |-  ( a + ( d ` i ) ) | 
						
							| 20 |  | cvdwa |  |-  AP | 
						
							| 21 | 2 | cv |  |-  k | 
						
							| 22 | 21 20 | cfv |  |-  ( AP ` k ) | 
						
							| 23 | 19 18 22 | co |  |-  ( ( a + ( d ` i ) ) ( AP ` k ) ( d ` i ) ) | 
						
							| 24 | 3 | cv |  |-  f | 
						
							| 25 | 24 | ccnv |  |-  `' f | 
						
							| 26 | 19 24 | cfv |  |-  ( f ` ( a + ( d ` i ) ) ) | 
						
							| 27 | 26 | csn |  |-  { ( f ` ( a + ( d ` i ) ) ) } | 
						
							| 28 | 25 27 | cima |  |-  ( `' f " { ( f ` ( a + ( d ` i ) ) ) } ) | 
						
							| 29 | 23 28 | wss |  |-  ( ( a + ( d ` i ) ) ( AP ` k ) ( d ` i ) ) C_ ( `' f " { ( f ` ( a + ( d ` i ) ) ) } ) | 
						
							| 30 | 29 13 11 | wral |  |-  A. i e. ( 1 ... m ) ( ( a + ( d ` i ) ) ( AP ` k ) ( d ` i ) ) C_ ( `' f " { ( f ` ( a + ( d ` i ) ) ) } ) | 
						
							| 31 |  | chash |  |-  # | 
						
							| 32 | 13 11 26 | cmpt |  |-  ( i e. ( 1 ... m ) |-> ( f ` ( a + ( d ` i ) ) ) ) | 
						
							| 33 | 32 | crn |  |-  ran ( i e. ( 1 ... m ) |-> ( f ` ( a + ( d ` i ) ) ) ) | 
						
							| 34 | 33 31 | cfv |  |-  ( # ` ran ( i e. ( 1 ... m ) |-> ( f ` ( a + ( d ` i ) ) ) ) ) | 
						
							| 35 | 34 10 | wceq |  |-  ( # ` ran ( i e. ( 1 ... m ) |-> ( f ` ( a + ( d ` i ) ) ) ) ) = m | 
						
							| 36 | 30 35 | wa |  |-  ( A. i e. ( 1 ... m ) ( ( a + ( d ` i ) ) ( AP ` k ) ( d ` i ) ) C_ ( `' f " { ( f ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... m ) |-> ( f ` ( a + ( d ` i ) ) ) ) ) = m ) | 
						
							| 37 | 36 6 12 | wrex |  |-  E. d e. ( NN ^m ( 1 ... m ) ) ( A. i e. ( 1 ... m ) ( ( a + ( d ` i ) ) ( AP ` k ) ( d ` i ) ) C_ ( `' f " { ( f ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... m ) |-> ( f ` ( a + ( d ` i ) ) ) ) ) = m ) | 
						
							| 38 | 37 4 5 | wrex |  |-  E. a e. NN E. d e. ( NN ^m ( 1 ... m ) ) ( A. i e. ( 1 ... m ) ( ( a + ( d ` i ) ) ( AP ` k ) ( d ` i ) ) C_ ( `' f " { ( f ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... m ) |-> ( f ` ( a + ( d ` i ) ) ) ) ) = m ) | 
						
							| 39 | 38 1 2 3 | coprab |  |-  { <. <. m , k >. , f >. | E. a e. NN E. d e. ( NN ^m ( 1 ... m ) ) ( A. i e. ( 1 ... m ) ( ( a + ( d ` i ) ) ( AP ` k ) ( d ` i ) ) C_ ( `' f " { ( f ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... m ) |-> ( f ` ( a + ( d ` i ) ) ) ) ) = m ) } | 
						
							| 40 | 0 39 | wceq |  |-  PolyAP = { <. <. m , k >. , f >. | E. a e. NN E. d e. ( NN ^m ( 1 ... m ) ) ( A. i e. ( 1 ... m ) ( ( a + ( d ` i ) ) ( AP ` k ) ( d ` i ) ) C_ ( `' f " { ( f ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... m ) |-> ( f ` ( a + ( d ` i ) ) ) ) ) = m ) } |