Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
|- ( ( k = K /\ a e. NN /\ d e. NN ) -> k = K ) |
2 |
1
|
oveq1d |
|- ( ( k = K /\ a e. NN /\ d e. NN ) -> ( k - 1 ) = ( K - 1 ) ) |
3 |
2
|
oveq2d |
|- ( ( k = K /\ a e. NN /\ d e. NN ) -> ( 0 ... ( k - 1 ) ) = ( 0 ... ( K - 1 ) ) ) |
4 |
3
|
mpteq1d |
|- ( ( k = K /\ a e. NN /\ d e. NN ) -> ( m e. ( 0 ... ( k - 1 ) ) |-> ( a + ( m x. d ) ) ) = ( m e. ( 0 ... ( K - 1 ) ) |-> ( a + ( m x. d ) ) ) ) |
5 |
4
|
rneqd |
|- ( ( k = K /\ a e. NN /\ d e. NN ) -> ran ( m e. ( 0 ... ( k - 1 ) ) |-> ( a + ( m x. d ) ) ) = ran ( m e. ( 0 ... ( K - 1 ) ) |-> ( a + ( m x. d ) ) ) ) |
6 |
5
|
mpoeq3dva |
|- ( k = K -> ( a e. NN , d e. NN |-> ran ( m e. ( 0 ... ( k - 1 ) ) |-> ( a + ( m x. d ) ) ) ) = ( a e. NN , d e. NN |-> ran ( m e. ( 0 ... ( K - 1 ) ) |-> ( a + ( m x. d ) ) ) ) ) |
7 |
|
df-vdwap |
|- AP = ( k e. NN0 |-> ( a e. NN , d e. NN |-> ran ( m e. ( 0 ... ( k - 1 ) ) |-> ( a + ( m x. d ) ) ) ) ) |
8 |
|
nnex |
|- NN e. _V |
9 |
8 8
|
mpoex |
|- ( a e. NN , d e. NN |-> ran ( m e. ( 0 ... ( K - 1 ) ) |-> ( a + ( m x. d ) ) ) ) e. _V |
10 |
6 7 9
|
fvmpt |
|- ( K e. NN0 -> ( AP ` K ) = ( a e. NN , d e. NN |-> ran ( m e. ( 0 ... ( K - 1 ) ) |-> ( a + ( m x. d ) ) ) ) ) |