| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp1 |  |-  ( ( k = K /\ a e. NN /\ d e. NN ) -> k = K ) | 
						
							| 2 | 1 | oveq1d |  |-  ( ( k = K /\ a e. NN /\ d e. NN ) -> ( k - 1 ) = ( K - 1 ) ) | 
						
							| 3 | 2 | oveq2d |  |-  ( ( k = K /\ a e. NN /\ d e. NN ) -> ( 0 ... ( k - 1 ) ) = ( 0 ... ( K - 1 ) ) ) | 
						
							| 4 | 3 | mpteq1d |  |-  ( ( k = K /\ a e. NN /\ d e. NN ) -> ( m e. ( 0 ... ( k - 1 ) ) |-> ( a + ( m x. d ) ) ) = ( m e. ( 0 ... ( K - 1 ) ) |-> ( a + ( m x. d ) ) ) ) | 
						
							| 5 | 4 | rneqd |  |-  ( ( k = K /\ a e. NN /\ d e. NN ) -> ran ( m e. ( 0 ... ( k - 1 ) ) |-> ( a + ( m x. d ) ) ) = ran ( m e. ( 0 ... ( K - 1 ) ) |-> ( a + ( m x. d ) ) ) ) | 
						
							| 6 | 5 | mpoeq3dva |  |-  ( k = K -> ( a e. NN , d e. NN |-> ran ( m e. ( 0 ... ( k - 1 ) ) |-> ( a + ( m x. d ) ) ) ) = ( a e. NN , d e. NN |-> ran ( m e. ( 0 ... ( K - 1 ) ) |-> ( a + ( m x. d ) ) ) ) ) | 
						
							| 7 |  | df-vdwap |  |-  AP = ( k e. NN0 |-> ( a e. NN , d e. NN |-> ran ( m e. ( 0 ... ( k - 1 ) ) |-> ( a + ( m x. d ) ) ) ) ) | 
						
							| 8 |  | nnex |  |-  NN e. _V | 
						
							| 9 | 8 8 | mpoex |  |-  ( a e. NN , d e. NN |-> ran ( m e. ( 0 ... ( K - 1 ) ) |-> ( a + ( m x. d ) ) ) ) e. _V | 
						
							| 10 | 6 7 9 | fvmpt |  |-  ( K e. NN0 -> ( AP ` K ) = ( a e. NN , d e. NN |-> ran ( m e. ( 0 ... ( K - 1 ) ) |-> ( a + ( m x. d ) ) ) ) ) |