| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpll |  |-  ( ( ( a e. NN /\ d e. NN ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> a e. NN ) | 
						
							| 2 |  | elfznn0 |  |-  ( m e. ( 0 ... ( K - 1 ) ) -> m e. NN0 ) | 
						
							| 3 | 2 | adantl |  |-  ( ( ( a e. NN /\ d e. NN ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> m e. NN0 ) | 
						
							| 4 |  | nnnn0 |  |-  ( d e. NN -> d e. NN0 ) | 
						
							| 5 | 4 | ad2antlr |  |-  ( ( ( a e. NN /\ d e. NN ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> d e. NN0 ) | 
						
							| 6 | 3 5 | nn0mulcld |  |-  ( ( ( a e. NN /\ d e. NN ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( m x. d ) e. NN0 ) | 
						
							| 7 |  | nnnn0addcl |  |-  ( ( a e. NN /\ ( m x. d ) e. NN0 ) -> ( a + ( m x. d ) ) e. NN ) | 
						
							| 8 | 1 6 7 | syl2anc |  |-  ( ( ( a e. NN /\ d e. NN ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( a + ( m x. d ) ) e. NN ) | 
						
							| 9 | 8 | fmpttd |  |-  ( ( a e. NN /\ d e. NN ) -> ( m e. ( 0 ... ( K - 1 ) ) |-> ( a + ( m x. d ) ) ) : ( 0 ... ( K - 1 ) ) --> NN ) | 
						
							| 10 | 9 | frnd |  |-  ( ( a e. NN /\ d e. NN ) -> ran ( m e. ( 0 ... ( K - 1 ) ) |-> ( a + ( m x. d ) ) ) C_ NN ) | 
						
							| 11 |  | nnex |  |-  NN e. _V | 
						
							| 12 | 11 | elpw2 |  |-  ( ran ( m e. ( 0 ... ( K - 1 ) ) |-> ( a + ( m x. d ) ) ) e. ~P NN <-> ran ( m e. ( 0 ... ( K - 1 ) ) |-> ( a + ( m x. d ) ) ) C_ NN ) | 
						
							| 13 | 10 12 | sylibr |  |-  ( ( a e. NN /\ d e. NN ) -> ran ( m e. ( 0 ... ( K - 1 ) ) |-> ( a + ( m x. d ) ) ) e. ~P NN ) | 
						
							| 14 | 13 | rgen2 |  |-  A. a e. NN A. d e. NN ran ( m e. ( 0 ... ( K - 1 ) ) |-> ( a + ( m x. d ) ) ) e. ~P NN | 
						
							| 15 |  | eqid |  |-  ( a e. NN , d e. NN |-> ran ( m e. ( 0 ... ( K - 1 ) ) |-> ( a + ( m x. d ) ) ) ) = ( a e. NN , d e. NN |-> ran ( m e. ( 0 ... ( K - 1 ) ) |-> ( a + ( m x. d ) ) ) ) | 
						
							| 16 | 15 | fmpo |  |-  ( A. a e. NN A. d e. NN ran ( m e. ( 0 ... ( K - 1 ) ) |-> ( a + ( m x. d ) ) ) e. ~P NN <-> ( a e. NN , d e. NN |-> ran ( m e. ( 0 ... ( K - 1 ) ) |-> ( a + ( m x. d ) ) ) ) : ( NN X. NN ) --> ~P NN ) | 
						
							| 17 | 14 16 | mpbi |  |-  ( a e. NN , d e. NN |-> ran ( m e. ( 0 ... ( K - 1 ) ) |-> ( a + ( m x. d ) ) ) ) : ( NN X. NN ) --> ~P NN | 
						
							| 18 |  | vdwapfval |  |-  ( K e. NN0 -> ( AP ` K ) = ( a e. NN , d e. NN |-> ran ( m e. ( 0 ... ( K - 1 ) ) |-> ( a + ( m x. d ) ) ) ) ) | 
						
							| 19 | 18 | feq1d |  |-  ( K e. NN0 -> ( ( AP ` K ) : ( NN X. NN ) --> ~P NN <-> ( a e. NN , d e. NN |-> ran ( m e. ( 0 ... ( K - 1 ) ) |-> ( a + ( m x. d ) ) ) ) : ( NN X. NN ) --> ~P NN ) ) | 
						
							| 20 | 17 19 | mpbiri |  |-  ( K e. NN0 -> ( AP ` K ) : ( NN X. NN ) --> ~P NN ) |