Step |
Hyp |
Ref |
Expression |
1 |
|
simpll |
|- ( ( ( a e. NN /\ d e. NN ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> a e. NN ) |
2 |
|
elfznn0 |
|- ( m e. ( 0 ... ( K - 1 ) ) -> m e. NN0 ) |
3 |
2
|
adantl |
|- ( ( ( a e. NN /\ d e. NN ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> m e. NN0 ) |
4 |
|
nnnn0 |
|- ( d e. NN -> d e. NN0 ) |
5 |
4
|
ad2antlr |
|- ( ( ( a e. NN /\ d e. NN ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> d e. NN0 ) |
6 |
3 5
|
nn0mulcld |
|- ( ( ( a e. NN /\ d e. NN ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( m x. d ) e. NN0 ) |
7 |
|
nnnn0addcl |
|- ( ( a e. NN /\ ( m x. d ) e. NN0 ) -> ( a + ( m x. d ) ) e. NN ) |
8 |
1 6 7
|
syl2anc |
|- ( ( ( a e. NN /\ d e. NN ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( a + ( m x. d ) ) e. NN ) |
9 |
8
|
fmpttd |
|- ( ( a e. NN /\ d e. NN ) -> ( m e. ( 0 ... ( K - 1 ) ) |-> ( a + ( m x. d ) ) ) : ( 0 ... ( K - 1 ) ) --> NN ) |
10 |
9
|
frnd |
|- ( ( a e. NN /\ d e. NN ) -> ran ( m e. ( 0 ... ( K - 1 ) ) |-> ( a + ( m x. d ) ) ) C_ NN ) |
11 |
|
nnex |
|- NN e. _V |
12 |
11
|
elpw2 |
|- ( ran ( m e. ( 0 ... ( K - 1 ) ) |-> ( a + ( m x. d ) ) ) e. ~P NN <-> ran ( m e. ( 0 ... ( K - 1 ) ) |-> ( a + ( m x. d ) ) ) C_ NN ) |
13 |
10 12
|
sylibr |
|- ( ( a e. NN /\ d e. NN ) -> ran ( m e. ( 0 ... ( K - 1 ) ) |-> ( a + ( m x. d ) ) ) e. ~P NN ) |
14 |
13
|
rgen2 |
|- A. a e. NN A. d e. NN ran ( m e. ( 0 ... ( K - 1 ) ) |-> ( a + ( m x. d ) ) ) e. ~P NN |
15 |
|
eqid |
|- ( a e. NN , d e. NN |-> ran ( m e. ( 0 ... ( K - 1 ) ) |-> ( a + ( m x. d ) ) ) ) = ( a e. NN , d e. NN |-> ran ( m e. ( 0 ... ( K - 1 ) ) |-> ( a + ( m x. d ) ) ) ) |
16 |
15
|
fmpo |
|- ( A. a e. NN A. d e. NN ran ( m e. ( 0 ... ( K - 1 ) ) |-> ( a + ( m x. d ) ) ) e. ~P NN <-> ( a e. NN , d e. NN |-> ran ( m e. ( 0 ... ( K - 1 ) ) |-> ( a + ( m x. d ) ) ) ) : ( NN X. NN ) --> ~P NN ) |
17 |
14 16
|
mpbi |
|- ( a e. NN , d e. NN |-> ran ( m e. ( 0 ... ( K - 1 ) ) |-> ( a + ( m x. d ) ) ) ) : ( NN X. NN ) --> ~P NN |
18 |
|
vdwapfval |
|- ( K e. NN0 -> ( AP ` K ) = ( a e. NN , d e. NN |-> ran ( m e. ( 0 ... ( K - 1 ) ) |-> ( a + ( m x. d ) ) ) ) ) |
19 |
18
|
feq1d |
|- ( K e. NN0 -> ( ( AP ` K ) : ( NN X. NN ) --> ~P NN <-> ( a e. NN , d e. NN |-> ran ( m e. ( 0 ... ( K - 1 ) ) |-> ( a + ( m x. d ) ) ) ) : ( NN X. NN ) --> ~P NN ) ) |
20 |
17 19
|
mpbiri |
|- ( K e. NN0 -> ( AP ` K ) : ( NN X. NN ) --> ~P NN ) |