| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpll |
⊢ ( ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → 𝑎 ∈ ℕ ) |
| 2 |
|
elfznn0 |
⊢ ( 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) → 𝑚 ∈ ℕ0 ) |
| 3 |
2
|
adantl |
⊢ ( ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → 𝑚 ∈ ℕ0 ) |
| 4 |
|
nnnn0 |
⊢ ( 𝑑 ∈ ℕ → 𝑑 ∈ ℕ0 ) |
| 5 |
4
|
ad2antlr |
⊢ ( ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → 𝑑 ∈ ℕ0 ) |
| 6 |
3 5
|
nn0mulcld |
⊢ ( ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( 𝑚 · 𝑑 ) ∈ ℕ0 ) |
| 7 |
|
nnnn0addcl |
⊢ ( ( 𝑎 ∈ ℕ ∧ ( 𝑚 · 𝑑 ) ∈ ℕ0 ) → ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ℕ ) |
| 8 |
1 6 7
|
syl2anc |
⊢ ( ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ℕ ) |
| 9 |
8
|
fmpttd |
⊢ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) → ( 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ↦ ( 𝑎 + ( 𝑚 · 𝑑 ) ) ) : ( 0 ... ( 𝐾 − 1 ) ) ⟶ ℕ ) |
| 10 |
9
|
frnd |
⊢ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) → ran ( 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ↦ ( 𝑎 + ( 𝑚 · 𝑑 ) ) ) ⊆ ℕ ) |
| 11 |
|
nnex |
⊢ ℕ ∈ V |
| 12 |
11
|
elpw2 |
⊢ ( ran ( 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ↦ ( 𝑎 + ( 𝑚 · 𝑑 ) ) ) ∈ 𝒫 ℕ ↔ ran ( 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ↦ ( 𝑎 + ( 𝑚 · 𝑑 ) ) ) ⊆ ℕ ) |
| 13 |
10 12
|
sylibr |
⊢ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) → ran ( 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ↦ ( 𝑎 + ( 𝑚 · 𝑑 ) ) ) ∈ 𝒫 ℕ ) |
| 14 |
13
|
rgen2 |
⊢ ∀ 𝑎 ∈ ℕ ∀ 𝑑 ∈ ℕ ran ( 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ↦ ( 𝑎 + ( 𝑚 · 𝑑 ) ) ) ∈ 𝒫 ℕ |
| 15 |
|
eqid |
⊢ ( 𝑎 ∈ ℕ , 𝑑 ∈ ℕ ↦ ran ( 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ↦ ( 𝑎 + ( 𝑚 · 𝑑 ) ) ) ) = ( 𝑎 ∈ ℕ , 𝑑 ∈ ℕ ↦ ran ( 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ↦ ( 𝑎 + ( 𝑚 · 𝑑 ) ) ) ) |
| 16 |
15
|
fmpo |
⊢ ( ∀ 𝑎 ∈ ℕ ∀ 𝑑 ∈ ℕ ran ( 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ↦ ( 𝑎 + ( 𝑚 · 𝑑 ) ) ) ∈ 𝒫 ℕ ↔ ( 𝑎 ∈ ℕ , 𝑑 ∈ ℕ ↦ ran ( 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ↦ ( 𝑎 + ( 𝑚 · 𝑑 ) ) ) ) : ( ℕ × ℕ ) ⟶ 𝒫 ℕ ) |
| 17 |
14 16
|
mpbi |
⊢ ( 𝑎 ∈ ℕ , 𝑑 ∈ ℕ ↦ ran ( 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ↦ ( 𝑎 + ( 𝑚 · 𝑑 ) ) ) ) : ( ℕ × ℕ ) ⟶ 𝒫 ℕ |
| 18 |
|
vdwapfval |
⊢ ( 𝐾 ∈ ℕ0 → ( AP ‘ 𝐾 ) = ( 𝑎 ∈ ℕ , 𝑑 ∈ ℕ ↦ ran ( 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ↦ ( 𝑎 + ( 𝑚 · 𝑑 ) ) ) ) ) |
| 19 |
18
|
feq1d |
⊢ ( 𝐾 ∈ ℕ0 → ( ( AP ‘ 𝐾 ) : ( ℕ × ℕ ) ⟶ 𝒫 ℕ ↔ ( 𝑎 ∈ ℕ , 𝑑 ∈ ℕ ↦ ran ( 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ↦ ( 𝑎 + ( 𝑚 · 𝑑 ) ) ) ) : ( ℕ × ℕ ) ⟶ 𝒫 ℕ ) ) |
| 20 |
17 19
|
mpbiri |
⊢ ( 𝐾 ∈ ℕ0 → ( AP ‘ 𝐾 ) : ( ℕ × ℕ ) ⟶ 𝒫 ℕ ) |