Step |
Hyp |
Ref |
Expression |
1 |
|
vdwapfval |
⊢ ( 𝐾 ∈ ℕ0 → ( AP ‘ 𝐾 ) = ( 𝑎 ∈ ℕ , 𝑑 ∈ ℕ ↦ ran ( 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ↦ ( 𝑎 + ( 𝑚 · 𝑑 ) ) ) ) ) |
2 |
1
|
3ad2ant1 |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ ) → ( AP ‘ 𝐾 ) = ( 𝑎 ∈ ℕ , 𝑑 ∈ ℕ ↦ ran ( 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ↦ ( 𝑎 + ( 𝑚 · 𝑑 ) ) ) ) ) |
3 |
2
|
oveqd |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ ) → ( 𝐴 ( AP ‘ 𝐾 ) 𝐷 ) = ( 𝐴 ( 𝑎 ∈ ℕ , 𝑑 ∈ ℕ ↦ ran ( 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ↦ ( 𝑎 + ( 𝑚 · 𝑑 ) ) ) ) 𝐷 ) ) |
4 |
|
oveq2 |
⊢ ( 𝑑 = 𝐷 → ( 𝑚 · 𝑑 ) = ( 𝑚 · 𝐷 ) ) |
5 |
|
oveq12 |
⊢ ( ( 𝑎 = 𝐴 ∧ ( 𝑚 · 𝑑 ) = ( 𝑚 · 𝐷 ) ) → ( 𝑎 + ( 𝑚 · 𝑑 ) ) = ( 𝐴 + ( 𝑚 · 𝐷 ) ) ) |
6 |
4 5
|
sylan2 |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑑 = 𝐷 ) → ( 𝑎 + ( 𝑚 · 𝑑 ) ) = ( 𝐴 + ( 𝑚 · 𝐷 ) ) ) |
7 |
6
|
mpteq2dv |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑑 = 𝐷 ) → ( 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ↦ ( 𝑎 + ( 𝑚 · 𝑑 ) ) ) = ( 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ↦ ( 𝐴 + ( 𝑚 · 𝐷 ) ) ) ) |
8 |
7
|
rneqd |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑑 = 𝐷 ) → ran ( 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ↦ ( 𝑎 + ( 𝑚 · 𝑑 ) ) ) = ran ( 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ↦ ( 𝐴 + ( 𝑚 · 𝐷 ) ) ) ) |
9 |
|
eqid |
⊢ ( 𝑎 ∈ ℕ , 𝑑 ∈ ℕ ↦ ran ( 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ↦ ( 𝑎 + ( 𝑚 · 𝑑 ) ) ) ) = ( 𝑎 ∈ ℕ , 𝑑 ∈ ℕ ↦ ran ( 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ↦ ( 𝑎 + ( 𝑚 · 𝑑 ) ) ) ) |
10 |
|
ovex |
⊢ ( 0 ... ( 𝐾 − 1 ) ) ∈ V |
11 |
10
|
mptex |
⊢ ( 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ↦ ( 𝐴 + ( 𝑚 · 𝐷 ) ) ) ∈ V |
12 |
11
|
rnex |
⊢ ran ( 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ↦ ( 𝐴 + ( 𝑚 · 𝐷 ) ) ) ∈ V |
13 |
8 9 12
|
ovmpoa |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ ) → ( 𝐴 ( 𝑎 ∈ ℕ , 𝑑 ∈ ℕ ↦ ran ( 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ↦ ( 𝑎 + ( 𝑚 · 𝑑 ) ) ) ) 𝐷 ) = ran ( 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ↦ ( 𝐴 + ( 𝑚 · 𝐷 ) ) ) ) |
14 |
13
|
3adant1 |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ ) → ( 𝐴 ( 𝑎 ∈ ℕ , 𝑑 ∈ ℕ ↦ ran ( 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ↦ ( 𝑎 + ( 𝑚 · 𝑑 ) ) ) ) 𝐷 ) = ran ( 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ↦ ( 𝐴 + ( 𝑚 · 𝐷 ) ) ) ) |
15 |
3 14
|
eqtrd |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ ) → ( 𝐴 ( AP ‘ 𝐾 ) 𝐷 ) = ran ( 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ↦ ( 𝐴 + ( 𝑚 · 𝐷 ) ) ) ) |
16 |
|
eqid |
⊢ ( 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ↦ ( 𝐴 + ( 𝑚 · 𝐷 ) ) ) = ( 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ↦ ( 𝐴 + ( 𝑚 · 𝐷 ) ) ) |
17 |
16
|
rnmpt |
⊢ ran ( 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ↦ ( 𝐴 + ( 𝑚 · 𝐷 ) ) ) = { 𝑥 ∣ ∃ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) 𝑥 = ( 𝐴 + ( 𝑚 · 𝐷 ) ) } |
18 |
15 17
|
eqtrdi |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ ) → ( 𝐴 ( AP ‘ 𝐾 ) 𝐷 ) = { 𝑥 ∣ ∃ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) 𝑥 = ( 𝐴 + ( 𝑚 · 𝐷 ) ) } ) |
19 |
18
|
eleq2d |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ ) → ( 𝑋 ∈ ( 𝐴 ( AP ‘ 𝐾 ) 𝐷 ) ↔ 𝑋 ∈ { 𝑥 ∣ ∃ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) 𝑥 = ( 𝐴 + ( 𝑚 · 𝐷 ) ) } ) ) |
20 |
|
id |
⊢ ( 𝑋 = ( 𝐴 + ( 𝑚 · 𝐷 ) ) → 𝑋 = ( 𝐴 + ( 𝑚 · 𝐷 ) ) ) |
21 |
|
ovex |
⊢ ( 𝐴 + ( 𝑚 · 𝐷 ) ) ∈ V |
22 |
20 21
|
eqeltrdi |
⊢ ( 𝑋 = ( 𝐴 + ( 𝑚 · 𝐷 ) ) → 𝑋 ∈ V ) |
23 |
22
|
rexlimivw |
⊢ ( ∃ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) 𝑋 = ( 𝐴 + ( 𝑚 · 𝐷 ) ) → 𝑋 ∈ V ) |
24 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 = ( 𝐴 + ( 𝑚 · 𝐷 ) ) ↔ 𝑋 = ( 𝐴 + ( 𝑚 · 𝐷 ) ) ) ) |
25 |
24
|
rexbidv |
⊢ ( 𝑥 = 𝑋 → ( ∃ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) 𝑥 = ( 𝐴 + ( 𝑚 · 𝐷 ) ) ↔ ∃ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) 𝑋 = ( 𝐴 + ( 𝑚 · 𝐷 ) ) ) ) |
26 |
23 25
|
elab3 |
⊢ ( 𝑋 ∈ { 𝑥 ∣ ∃ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) 𝑥 = ( 𝐴 + ( 𝑚 · 𝐷 ) ) } ↔ ∃ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) 𝑋 = ( 𝐴 + ( 𝑚 · 𝐷 ) ) ) |
27 |
19 26
|
bitrdi |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ ) → ( 𝑋 ∈ ( 𝐴 ( AP ‘ 𝐾 ) 𝐷 ) ↔ ∃ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) 𝑋 = ( 𝐴 + ( 𝑚 · 𝐷 ) ) ) ) |