| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vdwapfval | ⊢ ( 𝐾  ∈  ℕ0  →  ( AP ‘ 𝐾 )  =  ( 𝑎  ∈  ℕ ,  𝑑  ∈  ℕ  ↦  ran  ( 𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) )  ↦  ( 𝑎  +  ( 𝑚  ·  𝑑 ) ) ) ) ) | 
						
							| 2 | 1 | 3ad2ant1 | ⊢ ( ( 𝐾  ∈  ℕ0  ∧  𝐴  ∈  ℕ  ∧  𝐷  ∈  ℕ )  →  ( AP ‘ 𝐾 )  =  ( 𝑎  ∈  ℕ ,  𝑑  ∈  ℕ  ↦  ran  ( 𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) )  ↦  ( 𝑎  +  ( 𝑚  ·  𝑑 ) ) ) ) ) | 
						
							| 3 | 2 | oveqd | ⊢ ( ( 𝐾  ∈  ℕ0  ∧  𝐴  ∈  ℕ  ∧  𝐷  ∈  ℕ )  →  ( 𝐴 ( AP ‘ 𝐾 ) 𝐷 )  =  ( 𝐴 ( 𝑎  ∈  ℕ ,  𝑑  ∈  ℕ  ↦  ran  ( 𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) )  ↦  ( 𝑎  +  ( 𝑚  ·  𝑑 ) ) ) ) 𝐷 ) ) | 
						
							| 4 |  | oveq2 | ⊢ ( 𝑑  =  𝐷  →  ( 𝑚  ·  𝑑 )  =  ( 𝑚  ·  𝐷 ) ) | 
						
							| 5 |  | oveq12 | ⊢ ( ( 𝑎  =  𝐴  ∧  ( 𝑚  ·  𝑑 )  =  ( 𝑚  ·  𝐷 ) )  →  ( 𝑎  +  ( 𝑚  ·  𝑑 ) )  =  ( 𝐴  +  ( 𝑚  ·  𝐷 ) ) ) | 
						
							| 6 | 4 5 | sylan2 | ⊢ ( ( 𝑎  =  𝐴  ∧  𝑑  =  𝐷 )  →  ( 𝑎  +  ( 𝑚  ·  𝑑 ) )  =  ( 𝐴  +  ( 𝑚  ·  𝐷 ) ) ) | 
						
							| 7 | 6 | mpteq2dv | ⊢ ( ( 𝑎  =  𝐴  ∧  𝑑  =  𝐷 )  →  ( 𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) )  ↦  ( 𝑎  +  ( 𝑚  ·  𝑑 ) ) )  =  ( 𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) )  ↦  ( 𝐴  +  ( 𝑚  ·  𝐷 ) ) ) ) | 
						
							| 8 | 7 | rneqd | ⊢ ( ( 𝑎  =  𝐴  ∧  𝑑  =  𝐷 )  →  ran  ( 𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) )  ↦  ( 𝑎  +  ( 𝑚  ·  𝑑 ) ) )  =  ran  ( 𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) )  ↦  ( 𝐴  +  ( 𝑚  ·  𝐷 ) ) ) ) | 
						
							| 9 |  | eqid | ⊢ ( 𝑎  ∈  ℕ ,  𝑑  ∈  ℕ  ↦  ran  ( 𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) )  ↦  ( 𝑎  +  ( 𝑚  ·  𝑑 ) ) ) )  =  ( 𝑎  ∈  ℕ ,  𝑑  ∈  ℕ  ↦  ran  ( 𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) )  ↦  ( 𝑎  +  ( 𝑚  ·  𝑑 ) ) ) ) | 
						
							| 10 |  | ovex | ⊢ ( 0 ... ( 𝐾  −  1 ) )  ∈  V | 
						
							| 11 | 10 | mptex | ⊢ ( 𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) )  ↦  ( 𝐴  +  ( 𝑚  ·  𝐷 ) ) )  ∈  V | 
						
							| 12 | 11 | rnex | ⊢ ran  ( 𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) )  ↦  ( 𝐴  +  ( 𝑚  ·  𝐷 ) ) )  ∈  V | 
						
							| 13 | 8 9 12 | ovmpoa | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐷  ∈  ℕ )  →  ( 𝐴 ( 𝑎  ∈  ℕ ,  𝑑  ∈  ℕ  ↦  ran  ( 𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) )  ↦  ( 𝑎  +  ( 𝑚  ·  𝑑 ) ) ) ) 𝐷 )  =  ran  ( 𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) )  ↦  ( 𝐴  +  ( 𝑚  ·  𝐷 ) ) ) ) | 
						
							| 14 | 13 | 3adant1 | ⊢ ( ( 𝐾  ∈  ℕ0  ∧  𝐴  ∈  ℕ  ∧  𝐷  ∈  ℕ )  →  ( 𝐴 ( 𝑎  ∈  ℕ ,  𝑑  ∈  ℕ  ↦  ran  ( 𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) )  ↦  ( 𝑎  +  ( 𝑚  ·  𝑑 ) ) ) ) 𝐷 )  =  ran  ( 𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) )  ↦  ( 𝐴  +  ( 𝑚  ·  𝐷 ) ) ) ) | 
						
							| 15 | 3 14 | eqtrd | ⊢ ( ( 𝐾  ∈  ℕ0  ∧  𝐴  ∈  ℕ  ∧  𝐷  ∈  ℕ )  →  ( 𝐴 ( AP ‘ 𝐾 ) 𝐷 )  =  ran  ( 𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) )  ↦  ( 𝐴  +  ( 𝑚  ·  𝐷 ) ) ) ) | 
						
							| 16 |  | eqid | ⊢ ( 𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) )  ↦  ( 𝐴  +  ( 𝑚  ·  𝐷 ) ) )  =  ( 𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) )  ↦  ( 𝐴  +  ( 𝑚  ·  𝐷 ) ) ) | 
						
							| 17 | 16 | rnmpt | ⊢ ran  ( 𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) )  ↦  ( 𝐴  +  ( 𝑚  ·  𝐷 ) ) )  =  { 𝑥  ∣  ∃ 𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) 𝑥  =  ( 𝐴  +  ( 𝑚  ·  𝐷 ) ) } | 
						
							| 18 | 15 17 | eqtrdi | ⊢ ( ( 𝐾  ∈  ℕ0  ∧  𝐴  ∈  ℕ  ∧  𝐷  ∈  ℕ )  →  ( 𝐴 ( AP ‘ 𝐾 ) 𝐷 )  =  { 𝑥  ∣  ∃ 𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) 𝑥  =  ( 𝐴  +  ( 𝑚  ·  𝐷 ) ) } ) | 
						
							| 19 | 18 | eleq2d | ⊢ ( ( 𝐾  ∈  ℕ0  ∧  𝐴  ∈  ℕ  ∧  𝐷  ∈  ℕ )  →  ( 𝑋  ∈  ( 𝐴 ( AP ‘ 𝐾 ) 𝐷 )  ↔  𝑋  ∈  { 𝑥  ∣  ∃ 𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) 𝑥  =  ( 𝐴  +  ( 𝑚  ·  𝐷 ) ) } ) ) | 
						
							| 20 |  | id | ⊢ ( 𝑋  =  ( 𝐴  +  ( 𝑚  ·  𝐷 ) )  →  𝑋  =  ( 𝐴  +  ( 𝑚  ·  𝐷 ) ) ) | 
						
							| 21 |  | ovex | ⊢ ( 𝐴  +  ( 𝑚  ·  𝐷 ) )  ∈  V | 
						
							| 22 | 20 21 | eqeltrdi | ⊢ ( 𝑋  =  ( 𝐴  +  ( 𝑚  ·  𝐷 ) )  →  𝑋  ∈  V ) | 
						
							| 23 | 22 | rexlimivw | ⊢ ( ∃ 𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) 𝑋  =  ( 𝐴  +  ( 𝑚  ·  𝐷 ) )  →  𝑋  ∈  V ) | 
						
							| 24 |  | eqeq1 | ⊢ ( 𝑥  =  𝑋  →  ( 𝑥  =  ( 𝐴  +  ( 𝑚  ·  𝐷 ) )  ↔  𝑋  =  ( 𝐴  +  ( 𝑚  ·  𝐷 ) ) ) ) | 
						
							| 25 | 24 | rexbidv | ⊢ ( 𝑥  =  𝑋  →  ( ∃ 𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) 𝑥  =  ( 𝐴  +  ( 𝑚  ·  𝐷 ) )  ↔  ∃ 𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) 𝑋  =  ( 𝐴  +  ( 𝑚  ·  𝐷 ) ) ) ) | 
						
							| 26 | 23 25 | elab3 | ⊢ ( 𝑋  ∈  { 𝑥  ∣  ∃ 𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) 𝑥  =  ( 𝐴  +  ( 𝑚  ·  𝐷 ) ) }  ↔  ∃ 𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) 𝑋  =  ( 𝐴  +  ( 𝑚  ·  𝐷 ) ) ) | 
						
							| 27 | 19 26 | bitrdi | ⊢ ( ( 𝐾  ∈  ℕ0  ∧  𝐴  ∈  ℕ  ∧  𝐷  ∈  ℕ )  →  ( 𝑋  ∈  ( 𝐴 ( AP ‘ 𝐾 ) 𝐷 )  ↔  ∃ 𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) 𝑋  =  ( 𝐴  +  ( 𝑚  ·  𝐷 ) ) ) ) |