| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vdwapfval |  |-  ( K e. NN0 -> ( AP ` K ) = ( a e. NN , d e. NN |-> ran ( m e. ( 0 ... ( K - 1 ) ) |-> ( a + ( m x. d ) ) ) ) ) | 
						
							| 2 | 1 | 3ad2ant1 |  |-  ( ( K e. NN0 /\ A e. NN /\ D e. NN ) -> ( AP ` K ) = ( a e. NN , d e. NN |-> ran ( m e. ( 0 ... ( K - 1 ) ) |-> ( a + ( m x. d ) ) ) ) ) | 
						
							| 3 | 2 | oveqd |  |-  ( ( K e. NN0 /\ A e. NN /\ D e. NN ) -> ( A ( AP ` K ) D ) = ( A ( a e. NN , d e. NN |-> ran ( m e. ( 0 ... ( K - 1 ) ) |-> ( a + ( m x. d ) ) ) ) D ) ) | 
						
							| 4 |  | oveq2 |  |-  ( d = D -> ( m x. d ) = ( m x. D ) ) | 
						
							| 5 |  | oveq12 |  |-  ( ( a = A /\ ( m x. d ) = ( m x. D ) ) -> ( a + ( m x. d ) ) = ( A + ( m x. D ) ) ) | 
						
							| 6 | 4 5 | sylan2 |  |-  ( ( a = A /\ d = D ) -> ( a + ( m x. d ) ) = ( A + ( m x. D ) ) ) | 
						
							| 7 | 6 | mpteq2dv |  |-  ( ( a = A /\ d = D ) -> ( m e. ( 0 ... ( K - 1 ) ) |-> ( a + ( m x. d ) ) ) = ( m e. ( 0 ... ( K - 1 ) ) |-> ( A + ( m x. D ) ) ) ) | 
						
							| 8 | 7 | rneqd |  |-  ( ( a = A /\ d = D ) -> ran ( m e. ( 0 ... ( K - 1 ) ) |-> ( a + ( m x. d ) ) ) = ran ( m e. ( 0 ... ( K - 1 ) ) |-> ( A + ( m x. D ) ) ) ) | 
						
							| 9 |  | eqid |  |-  ( a e. NN , d e. NN |-> ran ( m e. ( 0 ... ( K - 1 ) ) |-> ( a + ( m x. d ) ) ) ) = ( a e. NN , d e. NN |-> ran ( m e. ( 0 ... ( K - 1 ) ) |-> ( a + ( m x. d ) ) ) ) | 
						
							| 10 |  | ovex |  |-  ( 0 ... ( K - 1 ) ) e. _V | 
						
							| 11 | 10 | mptex |  |-  ( m e. ( 0 ... ( K - 1 ) ) |-> ( A + ( m x. D ) ) ) e. _V | 
						
							| 12 | 11 | rnex |  |-  ran ( m e. ( 0 ... ( K - 1 ) ) |-> ( A + ( m x. D ) ) ) e. _V | 
						
							| 13 | 8 9 12 | ovmpoa |  |-  ( ( A e. NN /\ D e. NN ) -> ( A ( a e. NN , d e. NN |-> ran ( m e. ( 0 ... ( K - 1 ) ) |-> ( a + ( m x. d ) ) ) ) D ) = ran ( m e. ( 0 ... ( K - 1 ) ) |-> ( A + ( m x. D ) ) ) ) | 
						
							| 14 | 13 | 3adant1 |  |-  ( ( K e. NN0 /\ A e. NN /\ D e. NN ) -> ( A ( a e. NN , d e. NN |-> ran ( m e. ( 0 ... ( K - 1 ) ) |-> ( a + ( m x. d ) ) ) ) D ) = ran ( m e. ( 0 ... ( K - 1 ) ) |-> ( A + ( m x. D ) ) ) ) | 
						
							| 15 | 3 14 | eqtrd |  |-  ( ( K e. NN0 /\ A e. NN /\ D e. NN ) -> ( A ( AP ` K ) D ) = ran ( m e. ( 0 ... ( K - 1 ) ) |-> ( A + ( m x. D ) ) ) ) | 
						
							| 16 |  | eqid |  |-  ( m e. ( 0 ... ( K - 1 ) ) |-> ( A + ( m x. D ) ) ) = ( m e. ( 0 ... ( K - 1 ) ) |-> ( A + ( m x. D ) ) ) | 
						
							| 17 | 16 | rnmpt |  |-  ran ( m e. ( 0 ... ( K - 1 ) ) |-> ( A + ( m x. D ) ) ) = { x | E. m e. ( 0 ... ( K - 1 ) ) x = ( A + ( m x. D ) ) } | 
						
							| 18 | 15 17 | eqtrdi |  |-  ( ( K e. NN0 /\ A e. NN /\ D e. NN ) -> ( A ( AP ` K ) D ) = { x | E. m e. ( 0 ... ( K - 1 ) ) x = ( A + ( m x. D ) ) } ) | 
						
							| 19 | 18 | eleq2d |  |-  ( ( K e. NN0 /\ A e. NN /\ D e. NN ) -> ( X e. ( A ( AP ` K ) D ) <-> X e. { x | E. m e. ( 0 ... ( K - 1 ) ) x = ( A + ( m x. D ) ) } ) ) | 
						
							| 20 |  | id |  |-  ( X = ( A + ( m x. D ) ) -> X = ( A + ( m x. D ) ) ) | 
						
							| 21 |  | ovex |  |-  ( A + ( m x. D ) ) e. _V | 
						
							| 22 | 20 21 | eqeltrdi |  |-  ( X = ( A + ( m x. D ) ) -> X e. _V ) | 
						
							| 23 | 22 | rexlimivw |  |-  ( E. m e. ( 0 ... ( K - 1 ) ) X = ( A + ( m x. D ) ) -> X e. _V ) | 
						
							| 24 |  | eqeq1 |  |-  ( x = X -> ( x = ( A + ( m x. D ) ) <-> X = ( A + ( m x. D ) ) ) ) | 
						
							| 25 | 24 | rexbidv |  |-  ( x = X -> ( E. m e. ( 0 ... ( K - 1 ) ) x = ( A + ( m x. D ) ) <-> E. m e. ( 0 ... ( K - 1 ) ) X = ( A + ( m x. D ) ) ) ) | 
						
							| 26 | 23 25 | elab3 |  |-  ( X e. { x | E. m e. ( 0 ... ( K - 1 ) ) x = ( A + ( m x. D ) ) } <-> E. m e. ( 0 ... ( K - 1 ) ) X = ( A + ( m x. D ) ) ) | 
						
							| 27 | 19 26 | bitrdi |  |-  ( ( K e. NN0 /\ A e. NN /\ D e. NN ) -> ( X e. ( A ( AP ` K ) D ) <-> E. m e. ( 0 ... ( K - 1 ) ) X = ( A + ( m x. D ) ) ) ) |