Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
⊢ ( ( 𝑘 = 𝐾 ∧ 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) → 𝑘 = 𝐾 ) |
2 |
1
|
oveq1d |
⊢ ( ( 𝑘 = 𝐾 ∧ 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) → ( 𝑘 − 1 ) = ( 𝐾 − 1 ) ) |
3 |
2
|
oveq2d |
⊢ ( ( 𝑘 = 𝐾 ∧ 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) → ( 0 ... ( 𝑘 − 1 ) ) = ( 0 ... ( 𝐾 − 1 ) ) ) |
4 |
3
|
mpteq1d |
⊢ ( ( 𝑘 = 𝐾 ∧ 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) → ( 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ↦ ( 𝑎 + ( 𝑚 · 𝑑 ) ) ) = ( 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ↦ ( 𝑎 + ( 𝑚 · 𝑑 ) ) ) ) |
5 |
4
|
rneqd |
⊢ ( ( 𝑘 = 𝐾 ∧ 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) → ran ( 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ↦ ( 𝑎 + ( 𝑚 · 𝑑 ) ) ) = ran ( 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ↦ ( 𝑎 + ( 𝑚 · 𝑑 ) ) ) ) |
6 |
5
|
mpoeq3dva |
⊢ ( 𝑘 = 𝐾 → ( 𝑎 ∈ ℕ , 𝑑 ∈ ℕ ↦ ran ( 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ↦ ( 𝑎 + ( 𝑚 · 𝑑 ) ) ) ) = ( 𝑎 ∈ ℕ , 𝑑 ∈ ℕ ↦ ran ( 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ↦ ( 𝑎 + ( 𝑚 · 𝑑 ) ) ) ) ) |
7 |
|
df-vdwap |
⊢ AP = ( 𝑘 ∈ ℕ0 ↦ ( 𝑎 ∈ ℕ , 𝑑 ∈ ℕ ↦ ran ( 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ↦ ( 𝑎 + ( 𝑚 · 𝑑 ) ) ) ) ) |
8 |
|
nnex |
⊢ ℕ ∈ V |
9 |
8 8
|
mpoex |
⊢ ( 𝑎 ∈ ℕ , 𝑑 ∈ ℕ ↦ ran ( 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ↦ ( 𝑎 + ( 𝑚 · 𝑑 ) ) ) ) ∈ V |
10 |
6 7 9
|
fvmpt |
⊢ ( 𝐾 ∈ ℕ0 → ( AP ‘ 𝐾 ) = ( 𝑎 ∈ ℕ , 𝑑 ∈ ℕ ↦ ran ( 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ↦ ( 𝑎 + ( 𝑚 · 𝑑 ) ) ) ) ) |