| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp1 | ⊢ ( ( 𝑘  =  𝐾  ∧  𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  →  𝑘  =  𝐾 ) | 
						
							| 2 | 1 | oveq1d | ⊢ ( ( 𝑘  =  𝐾  ∧  𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  →  ( 𝑘  −  1 )  =  ( 𝐾  −  1 ) ) | 
						
							| 3 | 2 | oveq2d | ⊢ ( ( 𝑘  =  𝐾  ∧  𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  →  ( 0 ... ( 𝑘  −  1 ) )  =  ( 0 ... ( 𝐾  −  1 ) ) ) | 
						
							| 4 | 3 | mpteq1d | ⊢ ( ( 𝑘  =  𝐾  ∧  𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  →  ( 𝑚  ∈  ( 0 ... ( 𝑘  −  1 ) )  ↦  ( 𝑎  +  ( 𝑚  ·  𝑑 ) ) )  =  ( 𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) )  ↦  ( 𝑎  +  ( 𝑚  ·  𝑑 ) ) ) ) | 
						
							| 5 | 4 | rneqd | ⊢ ( ( 𝑘  =  𝐾  ∧  𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  →  ran  ( 𝑚  ∈  ( 0 ... ( 𝑘  −  1 ) )  ↦  ( 𝑎  +  ( 𝑚  ·  𝑑 ) ) )  =  ran  ( 𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) )  ↦  ( 𝑎  +  ( 𝑚  ·  𝑑 ) ) ) ) | 
						
							| 6 | 5 | mpoeq3dva | ⊢ ( 𝑘  =  𝐾  →  ( 𝑎  ∈  ℕ ,  𝑑  ∈  ℕ  ↦  ran  ( 𝑚  ∈  ( 0 ... ( 𝑘  −  1 ) )  ↦  ( 𝑎  +  ( 𝑚  ·  𝑑 ) ) ) )  =  ( 𝑎  ∈  ℕ ,  𝑑  ∈  ℕ  ↦  ran  ( 𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) )  ↦  ( 𝑎  +  ( 𝑚  ·  𝑑 ) ) ) ) ) | 
						
							| 7 |  | df-vdwap | ⊢ AP  =  ( 𝑘  ∈  ℕ0  ↦  ( 𝑎  ∈  ℕ ,  𝑑  ∈  ℕ  ↦  ran  ( 𝑚  ∈  ( 0 ... ( 𝑘  −  1 ) )  ↦  ( 𝑎  +  ( 𝑚  ·  𝑑 ) ) ) ) ) | 
						
							| 8 |  | nnex | ⊢ ℕ  ∈  V | 
						
							| 9 | 8 8 | mpoex | ⊢ ( 𝑎  ∈  ℕ ,  𝑑  ∈  ℕ  ↦  ran  ( 𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) )  ↦  ( 𝑎  +  ( 𝑚  ·  𝑑 ) ) ) )  ∈  V | 
						
							| 10 | 6 7 9 | fvmpt | ⊢ ( 𝐾  ∈  ℕ0  →  ( AP ‘ 𝐾 )  =  ( 𝑎  ∈  ℕ ,  𝑑  ∈  ℕ  ↦  ran  ( 𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) )  ↦  ( 𝑎  +  ( 𝑚  ·  𝑑 ) ) ) ) ) |