Metamath Proof Explorer


Theorem vdwapf

Description: The arithmetic progression function is a function. (Contributed by Mario Carneiro, 18-Aug-2014)

Ref Expression
Assertion vdwapf K 0 AP K : × 𝒫

Proof

Step Hyp Ref Expression
1 simpll a d m 0 K 1 a
2 elfznn0 m 0 K 1 m 0
3 2 adantl a d m 0 K 1 m 0
4 nnnn0 d d 0
5 4 ad2antlr a d m 0 K 1 d 0
6 3 5 nn0mulcld a d m 0 K 1 m d 0
7 nnnn0addcl a m d 0 a + m d
8 1 6 7 syl2anc a d m 0 K 1 a + m d
9 8 fmpttd a d m 0 K 1 a + m d : 0 K 1
10 9 frnd a d ran m 0 K 1 a + m d
11 nnex V
12 11 elpw2 ran m 0 K 1 a + m d 𝒫 ran m 0 K 1 a + m d
13 10 12 sylibr a d ran m 0 K 1 a + m d 𝒫
14 13 rgen2 a d ran m 0 K 1 a + m d 𝒫
15 eqid a , d ran m 0 K 1 a + m d = a , d ran m 0 K 1 a + m d
16 15 fmpo a d ran m 0 K 1 a + m d 𝒫 a , d ran m 0 K 1 a + m d : × 𝒫
17 14 16 mpbi a , d ran m 0 K 1 a + m d : × 𝒫
18 vdwapfval K 0 AP K = a , d ran m 0 K 1 a + m d
19 18 feq1d K 0 AP K : × 𝒫 a , d ran m 0 K 1 a + m d : × 𝒫
20 17 19 mpbiri K 0 AP K : × 𝒫