Metamath Proof Explorer


Theorem vdwapf

Description: The arithmetic progression function is a function. (Contributed by Mario Carneiro, 18-Aug-2014)

Ref Expression
Assertion vdwapf K0APK:×𝒫

Proof

Step Hyp Ref Expression
1 simpll adm0K1a
2 elfznn0 m0K1m0
3 2 adantl adm0K1m0
4 nnnn0 dd0
5 4 ad2antlr adm0K1d0
6 3 5 nn0mulcld adm0K1md0
7 nnnn0addcl amd0a+md
8 1 6 7 syl2anc adm0K1a+md
9 8 fmpttd adm0K1a+md:0K1
10 9 frnd adranm0K1a+md
11 nnex V
12 11 elpw2 ranm0K1a+md𝒫ranm0K1a+md
13 10 12 sylibr adranm0K1a+md𝒫
14 13 rgen2 adranm0K1a+md𝒫
15 eqid a,dranm0K1a+md=a,dranm0K1a+md
16 15 fmpo adranm0K1a+md𝒫a,dranm0K1a+md:×𝒫
17 14 16 mpbi a,dranm0K1a+md:×𝒫
18 vdwapfval K0APK=a,dranm0K1a+md
19 18 feq1d K0APK:×𝒫a,dranm0K1a+md:×𝒫
20 17 19 mpbiri K0APK:×𝒫