| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vdwmc.1 |
|
| 2 |
|
vdwmc.2 |
|
| 3 |
|
vdwmc.3 |
|
| 4 |
|
vdwpc.4 |
|
| 5 |
|
vdwpc.5 |
|
| 6 |
|
fex |
|
| 7 |
3 1 6
|
sylancl |
|
| 8 |
|
df-br |
|
| 9 |
|
df-vdwpc |
|
| 10 |
9
|
eleq2i |
|
| 11 |
8 10
|
bitri |
|
| 12 |
|
simp1 |
|
| 13 |
12
|
oveq2d |
|
| 14 |
13 5
|
eqtr4di |
|
| 15 |
14
|
oveq2d |
|
| 16 |
|
simp2 |
|
| 17 |
16
|
fveq2d |
|
| 18 |
17
|
oveqd |
|
| 19 |
|
simp3 |
|
| 20 |
19
|
cnveqd |
|
| 21 |
19
|
fveq1d |
|
| 22 |
21
|
sneqd |
|
| 23 |
20 22
|
imaeq12d |
|
| 24 |
18 23
|
sseq12d |
|
| 25 |
14 24
|
raleqbidv |
|
| 26 |
14 21
|
mpteq12dv |
|
| 27 |
26
|
rneqd |
|
| 28 |
27
|
fveq2d |
|
| 29 |
28 12
|
eqeq12d |
|
| 30 |
25 29
|
anbi12d |
|
| 31 |
15 30
|
rexeqbidv |
|
| 32 |
31
|
rexbidv |
|
| 33 |
32
|
eloprabga |
|
| 34 |
11 33
|
bitrid |
|
| 35 |
4 2 7 34
|
syl3anc |
|