Metamath Proof Explorer


Theorem vdwlem1

Description: Lemma for vdw . (Contributed by Mario Carneiro, 12-Sep-2014)

Ref Expression
Hypotheses vdwlem1.r φRFin
vdwlem1.k φK
vdwlem1.w φW
vdwlem1.f φF:1WR
vdwlem1.a φA
vdwlem1.m φM
vdwlem1.d φD:1M
vdwlem1.s φi1MA+DiAPKDiF-1FA+Di
vdwlem1.i φI1M
vdwlem1.e φFA=FA+DI
Assertion vdwlem1 φK+1MonoAPF

Proof

Step Hyp Ref Expression
1 vdwlem1.r φRFin
2 vdwlem1.k φK
3 vdwlem1.w φW
4 vdwlem1.f φF:1WR
5 vdwlem1.a φA
6 vdwlem1.m φM
7 vdwlem1.d φD:1M
8 vdwlem1.s φi1MA+DiAPKDiF-1FA+Di
9 vdwlem1.i φI1M
10 vdwlem1.e φFA=FA+DI
11 7 9 ffvelcdmd φDI
12 2 nnnn0d φK0
13 vdwapun K0ADIAAPK+1DI=AA+DIAPKDI
14 12 5 11 13 syl3anc φAAPK+1DI=AA+DIAPKDI
15 5 nnred φA
16 nnuz =1
17 6 16 eleqtrdi φM1
18 eluzfz1 M111M
19 17 18 syl φ11M
20 7 19 ffvelcdmd φD1
21 5 20 nnaddcld φA+D1
22 21 nnred φA+D1
23 3 nnred φW
24 20 nnrpd φD1+
25 15 24 ltaddrpd φA<A+D1
26 15 22 25 ltled φAA+D1
27 fveq2 i=1Di=D1
28 27 oveq2d i=1A+Di=A+D1
29 28 eleq1d i=1A+Di1WA+D11W
30 8 r19.21bi φi1MA+DiAPKDiF-1FA+Di
31 cnvimass F-1FA+DidomF
32 31 4 fssdm φF-1FA+Di1W
33 32 adantr φi1MF-1FA+Di1W
34 30 33 sstrd φi1MA+DiAPKDi1W
35 nnm1nn0 KK10
36 2 35 syl φK10
37 nn0uz 0=0
38 36 37 eleqtrdi φK10
39 eluzfz1 K1000K1
40 38 39 syl φ00K1
41 40 adantr φi1M00K1
42 7 ffvelcdmda φi1MDi
43 42 nncnd φi1MDi
44 43 mul02d φi1M0Di=0
45 44 oveq2d φi1MA+Di+0Di=A+Di+0
46 5 adantr φi1MA
47 46 42 nnaddcld φi1MA+Di
48 47 nncnd φi1MA+Di
49 48 addridd φi1MA+Di+0=A+Di
50 45 49 eqtr2d φi1MA+Di=A+Di+0Di
51 oveq1 m=0mDi=0Di
52 51 oveq2d m=0A+Di+mDi=A+Di+0Di
53 52 rspceeqv 00K1A+Di=A+Di+0Dim0K1A+Di=A+Di+mDi
54 41 50 53 syl2anc φi1Mm0K1A+Di=A+Di+mDi
55 2 adantr φi1MK
56 55 nnnn0d φi1MK0
57 vdwapval K0A+DiDiA+DiA+DiAPKDim0K1A+Di=A+Di+mDi
58 56 47 42 57 syl3anc φi1MA+DiA+DiAPKDim0K1A+Di=A+Di+mDi
59 54 58 mpbird φi1MA+DiA+DiAPKDi
60 34 59 sseldd φi1MA+Di1W
61 60 ralrimiva φi1MA+Di1W
62 29 61 19 rspcdva φA+D11W
63 elfzle2 A+D11WA+D1W
64 62 63 syl φA+D1W
65 15 22 23 26 64 letrd φAW
66 5 16 eleqtrdi φA1
67 3 nnzd φW
68 elfz5 A1WA1WAW
69 66 67 68 syl2anc φA1WAW
70 65 69 mpbird φA1W
71 eqidd φFA=FA
72 ffn F:1WRFFn1W
73 fniniseg FFn1WAF-1FAA1WFA=FA
74 4 72 73 3syl φAF-1FAA1WFA=FA
75 70 71 74 mpbir2and φAF-1FA
76 75 snssd φAF-1FA
77 fveq2 i=IDi=DI
78 77 oveq2d i=IA+Di=A+DI
79 78 77 oveq12d i=IA+DiAPKDi=A+DIAPKDI
80 78 fveq2d i=IFA+Di=FA+DI
81 80 sneqd i=IFA+Di=FA+DI
82 81 imaeq2d i=IF-1FA+Di=F-1FA+DI
83 79 82 sseq12d i=IA+DiAPKDiF-1FA+DiA+DIAPKDIF-1FA+DI
84 83 8 9 rspcdva φA+DIAPKDIF-1FA+DI
85 10 sneqd φFA=FA+DI
86 85 imaeq2d φF-1FA=F-1FA+DI
87 84 86 sseqtrrd φA+DIAPKDIF-1FA
88 76 87 unssd φAA+DIAPKDIF-1FA
89 14 88 eqsstrd φAAPK+1DIF-1FA
90 oveq1 a=AaAPK+1d=AAPK+1d
91 90 sseq1d a=AaAPK+1dF-1FAAAPK+1dF-1FA
92 oveq2 d=DIAAPK+1d=AAPK+1DI
93 92 sseq1d d=DIAAPK+1dF-1FAAAPK+1DIF-1FA
94 91 93 rspc2ev ADIAAPK+1DIF-1FAadaAPK+1dF-1FA
95 5 11 89 94 syl3anc φadaAPK+1dF-1FA
96 fvex FAV
97 sneq c=FAc=FA
98 97 imaeq2d c=FAF-1c=F-1FA
99 98 sseq2d c=FAaAPK+1dF-1caAPK+1dF-1FA
100 99 2rexbidv c=FAadaAPK+1dF-1cadaAPK+1dF-1FA
101 96 100 spcev adaAPK+1dF-1FAcadaAPK+1dF-1c
102 95 101 syl φcadaAPK+1dF-1c
103 ovex 1WV
104 peano2nn0 K0K+10
105 12 104 syl φK+10
106 103 105 4 vdwmc φK+1MonoAPFcadaAPK+1dF-1c
107 102 106 mpbird φK+1MonoAPF