Metamath Proof Explorer


Theorem vdwlem1

Description: Lemma for vdw . (Contributed by Mario Carneiro, 12-Sep-2014)

Ref Expression
Hypotheses vdwlem1.r φ R Fin
vdwlem1.k φ K
vdwlem1.w φ W
vdwlem1.f φ F : 1 W R
vdwlem1.a φ A
vdwlem1.m φ M
vdwlem1.d φ D : 1 M
vdwlem1.s φ i 1 M A + D i AP K D i F -1 F A + D i
vdwlem1.i φ I 1 M
vdwlem1.e φ F A = F A + D I
Assertion vdwlem1 φ K + 1 MonoAP F

Proof

Step Hyp Ref Expression
1 vdwlem1.r φ R Fin
2 vdwlem1.k φ K
3 vdwlem1.w φ W
4 vdwlem1.f φ F : 1 W R
5 vdwlem1.a φ A
6 vdwlem1.m φ M
7 vdwlem1.d φ D : 1 M
8 vdwlem1.s φ i 1 M A + D i AP K D i F -1 F A + D i
9 vdwlem1.i φ I 1 M
10 vdwlem1.e φ F A = F A + D I
11 7 9 ffvelrnd φ D I
12 2 nnnn0d φ K 0
13 vdwapun K 0 A D I A AP K + 1 D I = A A + D I AP K D I
14 12 5 11 13 syl3anc φ A AP K + 1 D I = A A + D I AP K D I
15 5 nnred φ A
16 nnuz = 1
17 6 16 eleqtrdi φ M 1
18 eluzfz1 M 1 1 1 M
19 17 18 syl φ 1 1 M
20 7 19 ffvelrnd φ D 1
21 5 20 nnaddcld φ A + D 1
22 21 nnred φ A + D 1
23 3 nnred φ W
24 20 nnrpd φ D 1 +
25 15 24 ltaddrpd φ A < A + D 1
26 15 22 25 ltled φ A A + D 1
27 fveq2 i = 1 D i = D 1
28 27 oveq2d i = 1 A + D i = A + D 1
29 28 eleq1d i = 1 A + D i 1 W A + D 1 1 W
30 8 r19.21bi φ i 1 M A + D i AP K D i F -1 F A + D i
31 cnvimass F -1 F A + D i dom F
32 31 4 fssdm φ F -1 F A + D i 1 W
33 32 adantr φ i 1 M F -1 F A + D i 1 W
34 30 33 sstrd φ i 1 M A + D i AP K D i 1 W
35 nnm1nn0 K K 1 0
36 2 35 syl φ K 1 0
37 nn0uz 0 = 0
38 36 37 eleqtrdi φ K 1 0
39 eluzfz1 K 1 0 0 0 K 1
40 38 39 syl φ 0 0 K 1
41 40 adantr φ i 1 M 0 0 K 1
42 7 ffvelrnda φ i 1 M D i
43 42 nncnd φ i 1 M D i
44 43 mul02d φ i 1 M 0 D i = 0
45 44 oveq2d φ i 1 M A + D i + 0 D i = A + D i + 0
46 5 adantr φ i 1 M A
47 46 42 nnaddcld φ i 1 M A + D i
48 47 nncnd φ i 1 M A + D i
49 48 addid1d φ i 1 M A + D i + 0 = A + D i
50 45 49 eqtr2d φ i 1 M A + D i = A + D i + 0 D i
51 oveq1 m = 0 m D i = 0 D i
52 51 oveq2d m = 0 A + D i + m D i = A + D i + 0 D i
53 52 rspceeqv 0 0 K 1 A + D i = A + D i + 0 D i m 0 K 1 A + D i = A + D i + m D i
54 41 50 53 syl2anc φ i 1 M m 0 K 1 A + D i = A + D i + m D i
55 2 adantr φ i 1 M K
56 55 nnnn0d φ i 1 M K 0
57 vdwapval K 0 A + D i D i A + D i A + D i AP K D i m 0 K 1 A + D i = A + D i + m D i
58 56 47 42 57 syl3anc φ i 1 M A + D i A + D i AP K D i m 0 K 1 A + D i = A + D i + m D i
59 54 58 mpbird φ i 1 M A + D i A + D i AP K D i
60 34 59 sseldd φ i 1 M A + D i 1 W
61 60 ralrimiva φ i 1 M A + D i 1 W
62 29 61 19 rspcdva φ A + D 1 1 W
63 elfzle2 A + D 1 1 W A + D 1 W
64 62 63 syl φ A + D 1 W
65 15 22 23 26 64 letrd φ A W
66 5 16 eleqtrdi φ A 1
67 3 nnzd φ W
68 elfz5 A 1 W A 1 W A W
69 66 67 68 syl2anc φ A 1 W A W
70 65 69 mpbird φ A 1 W
71 eqidd φ F A = F A
72 ffn F : 1 W R F Fn 1 W
73 fniniseg F Fn 1 W A F -1 F A A 1 W F A = F A
74 4 72 73 3syl φ A F -1 F A A 1 W F A = F A
75 70 71 74 mpbir2and φ A F -1 F A
76 75 snssd φ A F -1 F A
77 fveq2 i = I D i = D I
78 77 oveq2d i = I A + D i = A + D I
79 78 77 oveq12d i = I A + D i AP K D i = A + D I AP K D I
80 78 fveq2d i = I F A + D i = F A + D I
81 80 sneqd i = I F A + D i = F A + D I
82 81 imaeq2d i = I F -1 F A + D i = F -1 F A + D I
83 79 82 sseq12d i = I A + D i AP K D i F -1 F A + D i A + D I AP K D I F -1 F A + D I
84 83 8 9 rspcdva φ A + D I AP K D I F -1 F A + D I
85 10 sneqd φ F A = F A + D I
86 85 imaeq2d φ F -1 F A = F -1 F A + D I
87 84 86 sseqtrrd φ A + D I AP K D I F -1 F A
88 76 87 unssd φ A A + D I AP K D I F -1 F A
89 14 88 eqsstrd φ A AP K + 1 D I F -1 F A
90 oveq1 a = A a AP K + 1 d = A AP K + 1 d
91 90 sseq1d a = A a AP K + 1 d F -1 F A A AP K + 1 d F -1 F A
92 oveq2 d = D I A AP K + 1 d = A AP K + 1 D I
93 92 sseq1d d = D I A AP K + 1 d F -1 F A A AP K + 1 D I F -1 F A
94 91 93 rspc2ev A D I A AP K + 1 D I F -1 F A a d a AP K + 1 d F -1 F A
95 5 11 89 94 syl3anc φ a d a AP K + 1 d F -1 F A
96 fvex F A V
97 sneq c = F A c = F A
98 97 imaeq2d c = F A F -1 c = F -1 F A
99 98 sseq2d c = F A a AP K + 1 d F -1 c a AP K + 1 d F -1 F A
100 99 2rexbidv c = F A a d a AP K + 1 d F -1 c a d a AP K + 1 d F -1 F A
101 96 100 spcev a d a AP K + 1 d F -1 F A c a d a AP K + 1 d F -1 c
102 95 101 syl φ c a d a AP K + 1 d F -1 c
103 ovex 1 W V
104 peano2nn0 K 0 K + 1 0
105 12 104 syl φ K + 1 0
106 103 105 4 vdwmc φ K + 1 MonoAP F c a d a AP K + 1 d F -1 c
107 102 106 mpbird φ K + 1 MonoAP F