Metamath Proof Explorer


Theorem vdw

Description: Van der Waerden's theorem. For any finite coloring R and integer K , there is an N such that every coloring function from 1 ... N to R contains a monochromatic arithmetic progression (which written out in full means that there is a color c and base, increment values a , d such that all the numbers a , a + d , ... , a + ( k - 1 ) d lie in the preimage of { c } , i.e. they are all in 1 ... N and f evaluated at each one yields c ). (Contributed by Mario Carneiro, 13-Sep-2014)

Ref Expression
Assertion vdw R Fin K 0 n f R 1 n c R a d m 0 K 1 a + m d f -1 c

Proof

Step Hyp Ref Expression
1 simpl R Fin K 0 R Fin
2 simpr R Fin K 0 K 0
3 1 2 vdwlem13 R Fin K 0 n f R 1 n K MonoAP f
4 ovex 1 n V
5 simpllr R Fin K 0 n f R 1 n K 0
6 simpll R Fin K 0 n R Fin
7 elmapg R Fin 1 n V f R 1 n f : 1 n R
8 6 4 7 sylancl R Fin K 0 n f R 1 n f : 1 n R
9 8 biimpa R Fin K 0 n f R 1 n f : 1 n R
10 simplr R Fin K 0 n f R 1 n n
11 nnuz = 1
12 10 11 eleqtrdi R Fin K 0 n f R 1 n n 1
13 eluzfz1 n 1 1 1 n
14 12 13 syl R Fin K 0 n f R 1 n 1 1 n
15 4 5 9 14 vdwmc2 R Fin K 0 n f R 1 n K MonoAP f c R a d m 0 K 1 a + m d f -1 c
16 15 ralbidva R Fin K 0 n f R 1 n K MonoAP f f R 1 n c R a d m 0 K 1 a + m d f -1 c
17 16 rexbidva R Fin K 0 n f R 1 n K MonoAP f n f R 1 n c R a d m 0 K 1 a + m d f -1 c
18 3 17 mpbid R Fin K 0 n f R 1 n c R a d m 0 K 1 a + m d f -1 c