Metamath Proof Explorer


Theorem vdwnnlem1

Description: Corollary of vdw , and lemma for vdwnn . If F is a coloring of the integers, then there are arbitrarily long monochromatic APs in F . (Contributed by Mario Carneiro, 13-Sep-2014)

Ref Expression
Assertion vdwnnlem1 R Fin F : R K 0 c R a d m 0 K 1 a + m d F -1 c

Proof

Step Hyp Ref Expression
1 vdw R Fin K 0 n f R 1 n c R a d m 0 K 1 a + m d f -1 c
2 1 3adant2 R Fin F : R K 0 n f R 1 n c R a d m 0 K 1 a + m d f -1 c
3 simpl2 R Fin F : R K 0 n F : R
4 fz1ssnn 1 n
5 fssres F : R 1 n F 1 n : 1 n R
6 3 4 5 sylancl R Fin F : R K 0 n F 1 n : 1 n R
7 simpl1 R Fin F : R K 0 n R Fin
8 ovex 1 n V
9 elmapg R Fin 1 n V F 1 n R 1 n F 1 n : 1 n R
10 7 8 9 sylancl R Fin F : R K 0 n F 1 n R 1 n F 1 n : 1 n R
11 6 10 mpbird R Fin F : R K 0 n F 1 n R 1 n
12 cnveq f = F 1 n f -1 = F 1 n -1
13 12 imaeq1d f = F 1 n f -1 c = F 1 n -1 c
14 13 eleq2d f = F 1 n a + m d f -1 c a + m d F 1 n -1 c
15 14 ralbidv f = F 1 n m 0 K 1 a + m d f -1 c m 0 K 1 a + m d F 1 n -1 c
16 15 2rexbidv f = F 1 n a d m 0 K 1 a + m d f -1 c a d m 0 K 1 a + m d F 1 n -1 c
17 16 rexbidv f = F 1 n c R a d m 0 K 1 a + m d f -1 c c R a d m 0 K 1 a + m d F 1 n -1 c
18 17 rspcv F 1 n R 1 n f R 1 n c R a d m 0 K 1 a + m d f -1 c c R a d m 0 K 1 a + m d F 1 n -1 c
19 11 18 syl R Fin F : R K 0 n f R 1 n c R a d m 0 K 1 a + m d f -1 c c R a d m 0 K 1 a + m d F 1 n -1 c
20 resss F 1 n F
21 cnvss F 1 n F F 1 n -1 F -1
22 imass1 F 1 n -1 F -1 F 1 n -1 c F -1 c
23 20 21 22 mp2b F 1 n -1 c F -1 c
24 23 sseli a + m d F 1 n -1 c a + m d F -1 c
25 24 ralimi m 0 K 1 a + m d F 1 n -1 c m 0 K 1 a + m d F -1 c
26 25 reximi d m 0 K 1 a + m d F 1 n -1 c d m 0 K 1 a + m d F -1 c
27 26 reximi a d m 0 K 1 a + m d F 1 n -1 c a d m 0 K 1 a + m d F -1 c
28 27 reximi c R a d m 0 K 1 a + m d F 1 n -1 c c R a d m 0 K 1 a + m d F -1 c
29 19 28 syl6 R Fin F : R K 0 n f R 1 n c R a d m 0 K 1 a + m d f -1 c c R a d m 0 K 1 a + m d F -1 c
30 29 rexlimdva R Fin F : R K 0 n f R 1 n c R a d m 0 K 1 a + m d f -1 c c R a d m 0 K 1 a + m d F -1 c
31 2 30 mpd R Fin F : R K 0 c R a d m 0 K 1 a + m d F -1 c