Step |
Hyp |
Ref |
Expression |
1 |
|
vdw |
⊢ ( ( 𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0 ) → ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 𝑛 ) ) ∃ 𝑐 ∈ 𝑅 ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ∀ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝑓 “ { 𝑐 } ) ) |
2 |
1
|
3adant2 |
⊢ ( ( 𝑅 ∈ Fin ∧ 𝐹 : ℕ ⟶ 𝑅 ∧ 𝐾 ∈ ℕ0 ) → ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 𝑛 ) ) ∃ 𝑐 ∈ 𝑅 ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ∀ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝑓 “ { 𝑐 } ) ) |
3 |
|
simpl2 |
⊢ ( ( ( 𝑅 ∈ Fin ∧ 𝐹 : ℕ ⟶ 𝑅 ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ ) → 𝐹 : ℕ ⟶ 𝑅 ) |
4 |
|
fz1ssnn |
⊢ ( 1 ... 𝑛 ) ⊆ ℕ |
5 |
|
fssres |
⊢ ( ( 𝐹 : ℕ ⟶ 𝑅 ∧ ( 1 ... 𝑛 ) ⊆ ℕ ) → ( 𝐹 ↾ ( 1 ... 𝑛 ) ) : ( 1 ... 𝑛 ) ⟶ 𝑅 ) |
6 |
3 4 5
|
sylancl |
⊢ ( ( ( 𝑅 ∈ Fin ∧ 𝐹 : ℕ ⟶ 𝑅 ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ↾ ( 1 ... 𝑛 ) ) : ( 1 ... 𝑛 ) ⟶ 𝑅 ) |
7 |
|
simpl1 |
⊢ ( ( ( 𝑅 ∈ Fin ∧ 𝐹 : ℕ ⟶ 𝑅 ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ ) → 𝑅 ∈ Fin ) |
8 |
|
ovex |
⊢ ( 1 ... 𝑛 ) ∈ V |
9 |
|
elmapg |
⊢ ( ( 𝑅 ∈ Fin ∧ ( 1 ... 𝑛 ) ∈ V ) → ( ( 𝐹 ↾ ( 1 ... 𝑛 ) ) ∈ ( 𝑅 ↑m ( 1 ... 𝑛 ) ) ↔ ( 𝐹 ↾ ( 1 ... 𝑛 ) ) : ( 1 ... 𝑛 ) ⟶ 𝑅 ) ) |
10 |
7 8 9
|
sylancl |
⊢ ( ( ( 𝑅 ∈ Fin ∧ 𝐹 : ℕ ⟶ 𝑅 ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝐹 ↾ ( 1 ... 𝑛 ) ) ∈ ( 𝑅 ↑m ( 1 ... 𝑛 ) ) ↔ ( 𝐹 ↾ ( 1 ... 𝑛 ) ) : ( 1 ... 𝑛 ) ⟶ 𝑅 ) ) |
11 |
6 10
|
mpbird |
⊢ ( ( ( 𝑅 ∈ Fin ∧ 𝐹 : ℕ ⟶ 𝑅 ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ↾ ( 1 ... 𝑛 ) ) ∈ ( 𝑅 ↑m ( 1 ... 𝑛 ) ) ) |
12 |
|
cnveq |
⊢ ( 𝑓 = ( 𝐹 ↾ ( 1 ... 𝑛 ) ) → ◡ 𝑓 = ◡ ( 𝐹 ↾ ( 1 ... 𝑛 ) ) ) |
13 |
12
|
imaeq1d |
⊢ ( 𝑓 = ( 𝐹 ↾ ( 1 ... 𝑛 ) ) → ( ◡ 𝑓 “ { 𝑐 } ) = ( ◡ ( 𝐹 ↾ ( 1 ... 𝑛 ) ) “ { 𝑐 } ) ) |
14 |
13
|
eleq2d |
⊢ ( 𝑓 = ( 𝐹 ↾ ( 1 ... 𝑛 ) ) → ( ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝑓 “ { 𝑐 } ) ↔ ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ ( 𝐹 ↾ ( 1 ... 𝑛 ) ) “ { 𝑐 } ) ) ) |
15 |
14
|
ralbidv |
⊢ ( 𝑓 = ( 𝐹 ↾ ( 1 ... 𝑛 ) ) → ( ∀ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝑓 “ { 𝑐 } ) ↔ ∀ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ ( 𝐹 ↾ ( 1 ... 𝑛 ) ) “ { 𝑐 } ) ) ) |
16 |
15
|
2rexbidv |
⊢ ( 𝑓 = ( 𝐹 ↾ ( 1 ... 𝑛 ) ) → ( ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ∀ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝑓 “ { 𝑐 } ) ↔ ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ∀ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ ( 𝐹 ↾ ( 1 ... 𝑛 ) ) “ { 𝑐 } ) ) ) |
17 |
16
|
rexbidv |
⊢ ( 𝑓 = ( 𝐹 ↾ ( 1 ... 𝑛 ) ) → ( ∃ 𝑐 ∈ 𝑅 ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ∀ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝑓 “ { 𝑐 } ) ↔ ∃ 𝑐 ∈ 𝑅 ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ∀ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ ( 𝐹 ↾ ( 1 ... 𝑛 ) ) “ { 𝑐 } ) ) ) |
18 |
17
|
rspcv |
⊢ ( ( 𝐹 ↾ ( 1 ... 𝑛 ) ) ∈ ( 𝑅 ↑m ( 1 ... 𝑛 ) ) → ( ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 𝑛 ) ) ∃ 𝑐 ∈ 𝑅 ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ∀ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝑓 “ { 𝑐 } ) → ∃ 𝑐 ∈ 𝑅 ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ∀ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ ( 𝐹 ↾ ( 1 ... 𝑛 ) ) “ { 𝑐 } ) ) ) |
19 |
11 18
|
syl |
⊢ ( ( ( 𝑅 ∈ Fin ∧ 𝐹 : ℕ ⟶ 𝑅 ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ ) → ( ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 𝑛 ) ) ∃ 𝑐 ∈ 𝑅 ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ∀ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝑓 “ { 𝑐 } ) → ∃ 𝑐 ∈ 𝑅 ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ∀ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ ( 𝐹 ↾ ( 1 ... 𝑛 ) ) “ { 𝑐 } ) ) ) |
20 |
|
resss |
⊢ ( 𝐹 ↾ ( 1 ... 𝑛 ) ) ⊆ 𝐹 |
21 |
|
cnvss |
⊢ ( ( 𝐹 ↾ ( 1 ... 𝑛 ) ) ⊆ 𝐹 → ◡ ( 𝐹 ↾ ( 1 ... 𝑛 ) ) ⊆ ◡ 𝐹 ) |
22 |
|
imass1 |
⊢ ( ◡ ( 𝐹 ↾ ( 1 ... 𝑛 ) ) ⊆ ◡ 𝐹 → ( ◡ ( 𝐹 ↾ ( 1 ... 𝑛 ) ) “ { 𝑐 } ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ) |
23 |
20 21 22
|
mp2b |
⊢ ( ◡ ( 𝐹 ↾ ( 1 ... 𝑛 ) ) “ { 𝑐 } ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) |
24 |
23
|
sseli |
⊢ ( ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ ( 𝐹 ↾ ( 1 ... 𝑛 ) ) “ { 𝑐 } ) → ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑐 } ) ) |
25 |
24
|
ralimi |
⊢ ( ∀ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ ( 𝐹 ↾ ( 1 ... 𝑛 ) ) “ { 𝑐 } ) → ∀ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑐 } ) ) |
26 |
25
|
reximi |
⊢ ( ∃ 𝑑 ∈ ℕ ∀ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ ( 𝐹 ↾ ( 1 ... 𝑛 ) ) “ { 𝑐 } ) → ∃ 𝑑 ∈ ℕ ∀ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑐 } ) ) |
27 |
26
|
reximi |
⊢ ( ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ∀ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ ( 𝐹 ↾ ( 1 ... 𝑛 ) ) “ { 𝑐 } ) → ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ∀ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑐 } ) ) |
28 |
27
|
reximi |
⊢ ( ∃ 𝑐 ∈ 𝑅 ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ∀ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ ( 𝐹 ↾ ( 1 ... 𝑛 ) ) “ { 𝑐 } ) → ∃ 𝑐 ∈ 𝑅 ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ∀ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑐 } ) ) |
29 |
19 28
|
syl6 |
⊢ ( ( ( 𝑅 ∈ Fin ∧ 𝐹 : ℕ ⟶ 𝑅 ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ ) → ( ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 𝑛 ) ) ∃ 𝑐 ∈ 𝑅 ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ∀ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝑓 “ { 𝑐 } ) → ∃ 𝑐 ∈ 𝑅 ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ∀ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑐 } ) ) ) |
30 |
29
|
rexlimdva |
⊢ ( ( 𝑅 ∈ Fin ∧ 𝐹 : ℕ ⟶ 𝑅 ∧ 𝐾 ∈ ℕ0 ) → ( ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 𝑛 ) ) ∃ 𝑐 ∈ 𝑅 ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ∀ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝑓 “ { 𝑐 } ) → ∃ 𝑐 ∈ 𝑅 ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ∀ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑐 } ) ) ) |
31 |
2 30
|
mpd |
⊢ ( ( 𝑅 ∈ Fin ∧ 𝐹 : ℕ ⟶ 𝑅 ∧ 𝐾 ∈ ℕ0 ) → ∃ 𝑐 ∈ 𝑅 ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ∀ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑐 } ) ) |