Step |
Hyp |
Ref |
Expression |
1 |
|
simpll |
⊢ ( ( ( 𝑅 ∈ Fin ∧ 𝐹 : ℕ ⟶ 𝑅 ) ∧ ¬ ∃ 𝑐 ∈ 𝑅 ∀ 𝑘 ∈ ℕ ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ∀ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑐 } ) ) → 𝑅 ∈ Fin ) |
2 |
|
simplr |
⊢ ( ( ( 𝑅 ∈ Fin ∧ 𝐹 : ℕ ⟶ 𝑅 ) ∧ ¬ ∃ 𝑐 ∈ 𝑅 ∀ 𝑘 ∈ ℕ ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ∀ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑐 } ) ) → 𝐹 : ℕ ⟶ 𝑅 ) |
3 |
|
oveq1 |
⊢ ( 𝑚 = 𝑤 → ( 𝑚 · 𝑑 ) = ( 𝑤 · 𝑑 ) ) |
4 |
3
|
oveq2d |
⊢ ( 𝑚 = 𝑤 → ( 𝑎 + ( 𝑚 · 𝑑 ) ) = ( 𝑎 + ( 𝑤 · 𝑑 ) ) ) |
5 |
4
|
eleq1d |
⊢ ( 𝑚 = 𝑤 → ( ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑢 } ) ↔ ( 𝑎 + ( 𝑤 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑢 } ) ) ) |
6 |
5
|
cbvralvw |
⊢ ( ∀ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑢 } ) ↔ ∀ 𝑤 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝑎 + ( 𝑤 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑢 } ) ) |
7 |
|
oveq1 |
⊢ ( 𝑎 = 𝑦 → ( 𝑎 + ( 𝑤 · 𝑑 ) ) = ( 𝑦 + ( 𝑤 · 𝑑 ) ) ) |
8 |
7
|
eleq1d |
⊢ ( 𝑎 = 𝑦 → ( ( 𝑎 + ( 𝑤 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑢 } ) ↔ ( 𝑦 + ( 𝑤 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑢 } ) ) ) |
9 |
8
|
ralbidv |
⊢ ( 𝑎 = 𝑦 → ( ∀ 𝑤 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝑎 + ( 𝑤 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑢 } ) ↔ ∀ 𝑤 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝑦 + ( 𝑤 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑢 } ) ) ) |
10 |
6 9
|
syl5bb |
⊢ ( 𝑎 = 𝑦 → ( ∀ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑢 } ) ↔ ∀ 𝑤 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝑦 + ( 𝑤 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑢 } ) ) ) |
11 |
|
oveq2 |
⊢ ( 𝑑 = 𝑧 → ( 𝑤 · 𝑑 ) = ( 𝑤 · 𝑧 ) ) |
12 |
11
|
oveq2d |
⊢ ( 𝑑 = 𝑧 → ( 𝑦 + ( 𝑤 · 𝑑 ) ) = ( 𝑦 + ( 𝑤 · 𝑧 ) ) ) |
13 |
12
|
eleq1d |
⊢ ( 𝑑 = 𝑧 → ( ( 𝑦 + ( 𝑤 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑢 } ) ↔ ( 𝑦 + ( 𝑤 · 𝑧 ) ) ∈ ( ◡ 𝐹 “ { 𝑢 } ) ) ) |
14 |
13
|
ralbidv |
⊢ ( 𝑑 = 𝑧 → ( ∀ 𝑤 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝑦 + ( 𝑤 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑢 } ) ↔ ∀ 𝑤 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝑦 + ( 𝑤 · 𝑧 ) ) ∈ ( ◡ 𝐹 “ { 𝑢 } ) ) ) |
15 |
10 14
|
cbvrex2vw |
⊢ ( ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ∀ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑢 } ) ↔ ∃ 𝑦 ∈ ℕ ∃ 𝑧 ∈ ℕ ∀ 𝑤 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝑦 + ( 𝑤 · 𝑧 ) ) ∈ ( ◡ 𝐹 “ { 𝑢 } ) ) |
16 |
|
oveq1 |
⊢ ( 𝑘 = 𝑥 → ( 𝑘 − 1 ) = ( 𝑥 − 1 ) ) |
17 |
16
|
oveq2d |
⊢ ( 𝑘 = 𝑥 → ( 0 ... ( 𝑘 − 1 ) ) = ( 0 ... ( 𝑥 − 1 ) ) ) |
18 |
17
|
raleqdv |
⊢ ( 𝑘 = 𝑥 → ( ∀ 𝑤 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝑦 + ( 𝑤 · 𝑧 ) ) ∈ ( ◡ 𝐹 “ { 𝑢 } ) ↔ ∀ 𝑤 ∈ ( 0 ... ( 𝑥 − 1 ) ) ( 𝑦 + ( 𝑤 · 𝑧 ) ) ∈ ( ◡ 𝐹 “ { 𝑢 } ) ) ) |
19 |
18
|
2rexbidv |
⊢ ( 𝑘 = 𝑥 → ( ∃ 𝑦 ∈ ℕ ∃ 𝑧 ∈ ℕ ∀ 𝑤 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝑦 + ( 𝑤 · 𝑧 ) ) ∈ ( ◡ 𝐹 “ { 𝑢 } ) ↔ ∃ 𝑦 ∈ ℕ ∃ 𝑧 ∈ ℕ ∀ 𝑤 ∈ ( 0 ... ( 𝑥 − 1 ) ) ( 𝑦 + ( 𝑤 · 𝑧 ) ) ∈ ( ◡ 𝐹 “ { 𝑢 } ) ) ) |
20 |
15 19
|
syl5bb |
⊢ ( 𝑘 = 𝑥 → ( ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ∀ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑢 } ) ↔ ∃ 𝑦 ∈ ℕ ∃ 𝑧 ∈ ℕ ∀ 𝑤 ∈ ( 0 ... ( 𝑥 − 1 ) ) ( 𝑦 + ( 𝑤 · 𝑧 ) ) ∈ ( ◡ 𝐹 “ { 𝑢 } ) ) ) |
21 |
20
|
notbid |
⊢ ( 𝑘 = 𝑥 → ( ¬ ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ∀ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑢 } ) ↔ ¬ ∃ 𝑦 ∈ ℕ ∃ 𝑧 ∈ ℕ ∀ 𝑤 ∈ ( 0 ... ( 𝑥 − 1 ) ) ( 𝑦 + ( 𝑤 · 𝑧 ) ) ∈ ( ◡ 𝐹 “ { 𝑢 } ) ) ) |
22 |
21
|
cbvrabv |
⊢ { 𝑘 ∈ ℕ ∣ ¬ ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ∀ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑢 } ) } = { 𝑥 ∈ ℕ ∣ ¬ ∃ 𝑦 ∈ ℕ ∃ 𝑧 ∈ ℕ ∀ 𝑤 ∈ ( 0 ... ( 𝑥 − 1 ) ) ( 𝑦 + ( 𝑤 · 𝑧 ) ) ∈ ( ◡ 𝐹 “ { 𝑢 } ) } |
23 |
|
simpr |
⊢ ( ( ( 𝑅 ∈ Fin ∧ 𝐹 : ℕ ⟶ 𝑅 ) ∧ ¬ ∃ 𝑐 ∈ 𝑅 ∀ 𝑘 ∈ ℕ ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ∀ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑐 } ) ) → ¬ ∃ 𝑐 ∈ 𝑅 ∀ 𝑘 ∈ ℕ ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ∀ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑐 } ) ) |
24 |
|
sneq |
⊢ ( 𝑐 = 𝑢 → { 𝑐 } = { 𝑢 } ) |
25 |
24
|
imaeq2d |
⊢ ( 𝑐 = 𝑢 → ( ◡ 𝐹 “ { 𝑐 } ) = ( ◡ 𝐹 “ { 𝑢 } ) ) |
26 |
25
|
eleq2d |
⊢ ( 𝑐 = 𝑢 → ( ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑐 } ) ↔ ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑢 } ) ) ) |
27 |
26
|
ralbidv |
⊢ ( 𝑐 = 𝑢 → ( ∀ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑐 } ) ↔ ∀ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑢 } ) ) ) |
28 |
27
|
2rexbidv |
⊢ ( 𝑐 = 𝑢 → ( ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ∀ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑐 } ) ↔ ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ∀ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑢 } ) ) ) |
29 |
28
|
ralbidv |
⊢ ( 𝑐 = 𝑢 → ( ∀ 𝑘 ∈ ℕ ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ∀ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑐 } ) ↔ ∀ 𝑘 ∈ ℕ ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ∀ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑢 } ) ) ) |
30 |
29
|
cbvrexvw |
⊢ ( ∃ 𝑐 ∈ 𝑅 ∀ 𝑘 ∈ ℕ ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ∀ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑐 } ) ↔ ∃ 𝑢 ∈ 𝑅 ∀ 𝑘 ∈ ℕ ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ∀ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑢 } ) ) |
31 |
23 30
|
sylnib |
⊢ ( ( ( 𝑅 ∈ Fin ∧ 𝐹 : ℕ ⟶ 𝑅 ) ∧ ¬ ∃ 𝑐 ∈ 𝑅 ∀ 𝑘 ∈ ℕ ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ∀ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑐 } ) ) → ¬ ∃ 𝑢 ∈ 𝑅 ∀ 𝑘 ∈ ℕ ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ∀ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑢 } ) ) |
32 |
|
rabn0 |
⊢ ( { 𝑘 ∈ ℕ ∣ ¬ ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ∀ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑢 } ) } ≠ ∅ ↔ ∃ 𝑘 ∈ ℕ ¬ ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ∀ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑢 } ) ) |
33 |
|
rexnal |
⊢ ( ∃ 𝑘 ∈ ℕ ¬ ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ∀ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑢 } ) ↔ ¬ ∀ 𝑘 ∈ ℕ ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ∀ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑢 } ) ) |
34 |
32 33
|
bitri |
⊢ ( { 𝑘 ∈ ℕ ∣ ¬ ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ∀ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑢 } ) } ≠ ∅ ↔ ¬ ∀ 𝑘 ∈ ℕ ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ∀ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑢 } ) ) |
35 |
34
|
ralbii |
⊢ ( ∀ 𝑢 ∈ 𝑅 { 𝑘 ∈ ℕ ∣ ¬ ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ∀ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑢 } ) } ≠ ∅ ↔ ∀ 𝑢 ∈ 𝑅 ¬ ∀ 𝑘 ∈ ℕ ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ∀ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑢 } ) ) |
36 |
|
ralnex |
⊢ ( ∀ 𝑢 ∈ 𝑅 ¬ ∀ 𝑘 ∈ ℕ ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ∀ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑢 } ) ↔ ¬ ∃ 𝑢 ∈ 𝑅 ∀ 𝑘 ∈ ℕ ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ∀ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑢 } ) ) |
37 |
35 36
|
bitri |
⊢ ( ∀ 𝑢 ∈ 𝑅 { 𝑘 ∈ ℕ ∣ ¬ ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ∀ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑢 } ) } ≠ ∅ ↔ ¬ ∃ 𝑢 ∈ 𝑅 ∀ 𝑘 ∈ ℕ ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ∀ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑢 } ) ) |
38 |
31 37
|
sylibr |
⊢ ( ( ( 𝑅 ∈ Fin ∧ 𝐹 : ℕ ⟶ 𝑅 ) ∧ ¬ ∃ 𝑐 ∈ 𝑅 ∀ 𝑘 ∈ ℕ ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ∀ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑐 } ) ) → ∀ 𝑢 ∈ 𝑅 { 𝑘 ∈ ℕ ∣ ¬ ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ∀ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑢 } ) } ≠ ∅ ) |
39 |
1 2 22 38
|
vdwnnlem3 |
⊢ ¬ ( ( 𝑅 ∈ Fin ∧ 𝐹 : ℕ ⟶ 𝑅 ) ∧ ¬ ∃ 𝑐 ∈ 𝑅 ∀ 𝑘 ∈ ℕ ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ∀ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑐 } ) ) |
40 |
|
iman |
⊢ ( ( ( 𝑅 ∈ Fin ∧ 𝐹 : ℕ ⟶ 𝑅 ) → ∃ 𝑐 ∈ 𝑅 ∀ 𝑘 ∈ ℕ ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ∀ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑐 } ) ) ↔ ¬ ( ( 𝑅 ∈ Fin ∧ 𝐹 : ℕ ⟶ 𝑅 ) ∧ ¬ ∃ 𝑐 ∈ 𝑅 ∀ 𝑘 ∈ ℕ ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ∀ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑐 } ) ) ) |
41 |
39 40
|
mpbir |
⊢ ( ( 𝑅 ∈ Fin ∧ 𝐹 : ℕ ⟶ 𝑅 ) → ∃ 𝑐 ∈ 𝑅 ∀ 𝑘 ∈ ℕ ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ∀ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑐 } ) ) |