Metamath Proof Explorer


Theorem vdwnn

Description: Van der Waerden's theorem, infinitary version. For any finite coloring F of the positive integers, there is a color c that contains arbitrarily long arithmetic progressions. (Contributed by Mario Carneiro, 13-Sep-2014)

Ref Expression
Assertion vdwnn R Fin F : R c R k a d m 0 k 1 a + m d F -1 c

Proof

Step Hyp Ref Expression
1 simpll R Fin F : R ¬ c R k a d m 0 k 1 a + m d F -1 c R Fin
2 simplr R Fin F : R ¬ c R k a d m 0 k 1 a + m d F -1 c F : R
3 oveq1 m = w m d = w d
4 3 oveq2d m = w a + m d = a + w d
5 4 eleq1d m = w a + m d F -1 u a + w d F -1 u
6 5 cbvralvw m 0 k 1 a + m d F -1 u w 0 k 1 a + w d F -1 u
7 oveq1 a = y a + w d = y + w d
8 7 eleq1d a = y a + w d F -1 u y + w d F -1 u
9 8 ralbidv a = y w 0 k 1 a + w d F -1 u w 0 k 1 y + w d F -1 u
10 6 9 syl5bb a = y m 0 k 1 a + m d F -1 u w 0 k 1 y + w d F -1 u
11 oveq2 d = z w d = w z
12 11 oveq2d d = z y + w d = y + w z
13 12 eleq1d d = z y + w d F -1 u y + w z F -1 u
14 13 ralbidv d = z w 0 k 1 y + w d F -1 u w 0 k 1 y + w z F -1 u
15 10 14 cbvrex2vw a d m 0 k 1 a + m d F -1 u y z w 0 k 1 y + w z F -1 u
16 oveq1 k = x k 1 = x 1
17 16 oveq2d k = x 0 k 1 = 0 x 1
18 17 raleqdv k = x w 0 k 1 y + w z F -1 u w 0 x 1 y + w z F -1 u
19 18 2rexbidv k = x y z w 0 k 1 y + w z F -1 u y z w 0 x 1 y + w z F -1 u
20 15 19 syl5bb k = x a d m 0 k 1 a + m d F -1 u y z w 0 x 1 y + w z F -1 u
21 20 notbid k = x ¬ a d m 0 k 1 a + m d F -1 u ¬ y z w 0 x 1 y + w z F -1 u
22 21 cbvrabv k | ¬ a d m 0 k 1 a + m d F -1 u = x | ¬ y z w 0 x 1 y + w z F -1 u
23 simpr R Fin F : R ¬ c R k a d m 0 k 1 a + m d F -1 c ¬ c R k a d m 0 k 1 a + m d F -1 c
24 sneq c = u c = u
25 24 imaeq2d c = u F -1 c = F -1 u
26 25 eleq2d c = u a + m d F -1 c a + m d F -1 u
27 26 ralbidv c = u m 0 k 1 a + m d F -1 c m 0 k 1 a + m d F -1 u
28 27 2rexbidv c = u a d m 0 k 1 a + m d F -1 c a d m 0 k 1 a + m d F -1 u
29 28 ralbidv c = u k a d m 0 k 1 a + m d F -1 c k a d m 0 k 1 a + m d F -1 u
30 29 cbvrexvw c R k a d m 0 k 1 a + m d F -1 c u R k a d m 0 k 1 a + m d F -1 u
31 23 30 sylnib R Fin F : R ¬ c R k a d m 0 k 1 a + m d F -1 c ¬ u R k a d m 0 k 1 a + m d F -1 u
32 rabn0 k | ¬ a d m 0 k 1 a + m d F -1 u k ¬ a d m 0 k 1 a + m d F -1 u
33 rexnal k ¬ a d m 0 k 1 a + m d F -1 u ¬ k a d m 0 k 1 a + m d F -1 u
34 32 33 bitri k | ¬ a d m 0 k 1 a + m d F -1 u ¬ k a d m 0 k 1 a + m d F -1 u
35 34 ralbii u R k | ¬ a d m 0 k 1 a + m d F -1 u u R ¬ k a d m 0 k 1 a + m d F -1 u
36 ralnex u R ¬ k a d m 0 k 1 a + m d F -1 u ¬ u R k a d m 0 k 1 a + m d F -1 u
37 35 36 bitri u R k | ¬ a d m 0 k 1 a + m d F -1 u ¬ u R k a d m 0 k 1 a + m d F -1 u
38 31 37 sylibr R Fin F : R ¬ c R k a d m 0 k 1 a + m d F -1 c u R k | ¬ a d m 0 k 1 a + m d F -1 u
39 1 2 22 38 vdwnnlem3 ¬ R Fin F : R ¬ c R k a d m 0 k 1 a + m d F -1 c
40 iman R Fin F : R c R k a d m 0 k 1 a + m d F -1 c ¬ R Fin F : R ¬ c R k a d m 0 k 1 a + m d F -1 c
41 39 40 mpbir R Fin F : R c R k a d m 0 k 1 a + m d F -1 c