Metamath Proof Explorer


Theorem vdwnn

Description: Van der Waerden's theorem, infinitary version. For any finite coloring F of the positive integers, there is a color c that contains arbitrarily long arithmetic progressions. (Contributed by Mario Carneiro, 13-Sep-2014)

Ref Expression
Assertion vdwnn RFinF:RcRkadm0k1a+mdF-1c

Proof

Step Hyp Ref Expression
1 simpll RFinF:R¬cRkadm0k1a+mdF-1cRFin
2 simplr RFinF:R¬cRkadm0k1a+mdF-1cF:R
3 oveq1 m=wmd=wd
4 3 oveq2d m=wa+md=a+wd
5 4 eleq1d m=wa+mdF-1ua+wdF-1u
6 5 cbvralvw m0k1a+mdF-1uw0k1a+wdF-1u
7 oveq1 a=ya+wd=y+wd
8 7 eleq1d a=ya+wdF-1uy+wdF-1u
9 8 ralbidv a=yw0k1a+wdF-1uw0k1y+wdF-1u
10 6 9 bitrid a=ym0k1a+mdF-1uw0k1y+wdF-1u
11 oveq2 d=zwd=wz
12 11 oveq2d d=zy+wd=y+wz
13 12 eleq1d d=zy+wdF-1uy+wzF-1u
14 13 ralbidv d=zw0k1y+wdF-1uw0k1y+wzF-1u
15 10 14 cbvrex2vw adm0k1a+mdF-1uyzw0k1y+wzF-1u
16 oveq1 k=xk1=x1
17 16 oveq2d k=x0k1=0x1
18 17 raleqdv k=xw0k1y+wzF-1uw0x1y+wzF-1u
19 18 2rexbidv k=xyzw0k1y+wzF-1uyzw0x1y+wzF-1u
20 15 19 bitrid k=xadm0k1a+mdF-1uyzw0x1y+wzF-1u
21 20 notbid k=x¬adm0k1a+mdF-1u¬yzw0x1y+wzF-1u
22 21 cbvrabv k|¬adm0k1a+mdF-1u=x|¬yzw0x1y+wzF-1u
23 simpr RFinF:R¬cRkadm0k1a+mdF-1c¬cRkadm0k1a+mdF-1c
24 sneq c=uc=u
25 24 imaeq2d c=uF-1c=F-1u
26 25 eleq2d c=ua+mdF-1ca+mdF-1u
27 26 ralbidv c=um0k1a+mdF-1cm0k1a+mdF-1u
28 27 2rexbidv c=uadm0k1a+mdF-1cadm0k1a+mdF-1u
29 28 ralbidv c=ukadm0k1a+mdF-1ckadm0k1a+mdF-1u
30 29 cbvrexvw cRkadm0k1a+mdF-1cuRkadm0k1a+mdF-1u
31 23 30 sylnib RFinF:R¬cRkadm0k1a+mdF-1c¬uRkadm0k1a+mdF-1u
32 rabn0 k|¬adm0k1a+mdF-1uk¬adm0k1a+mdF-1u
33 rexnal k¬adm0k1a+mdF-1u¬kadm0k1a+mdF-1u
34 32 33 bitri k|¬adm0k1a+mdF-1u¬kadm0k1a+mdF-1u
35 34 ralbii uRk|¬adm0k1a+mdF-1uuR¬kadm0k1a+mdF-1u
36 ralnex uR¬kadm0k1a+mdF-1u¬uRkadm0k1a+mdF-1u
37 35 36 bitri uRk|¬adm0k1a+mdF-1u¬uRkadm0k1a+mdF-1u
38 31 37 sylibr RFinF:R¬cRkadm0k1a+mdF-1cuRk|¬adm0k1a+mdF-1u
39 1 2 22 38 vdwnnlem3 ¬RFinF:R¬cRkadm0k1a+mdF-1c
40 iman RFinF:RcRkadm0k1a+mdF-1c¬RFinF:R¬cRkadm0k1a+mdF-1c
41 39 40 mpbir RFinF:RcRkadm0k1a+mdF-1c