Step |
Hyp |
Ref |
Expression |
1 |
|
simpll |
|
2 |
|
simplr |
|
3 |
|
oveq1 |
|
4 |
3
|
oveq2d |
|
5 |
4
|
eleq1d |
|
6 |
5
|
cbvralvw |
|
7 |
|
oveq1 |
|
8 |
7
|
eleq1d |
|
9 |
8
|
ralbidv |
|
10 |
6 9
|
syl5bb |
|
11 |
|
oveq2 |
|
12 |
11
|
oveq2d |
|
13 |
12
|
eleq1d |
|
14 |
13
|
ralbidv |
|
15 |
10 14
|
cbvrex2vw |
|
16 |
|
oveq1 |
|
17 |
16
|
oveq2d |
|
18 |
17
|
raleqdv |
|
19 |
18
|
2rexbidv |
|
20 |
15 19
|
syl5bb |
|
21 |
20
|
notbid |
|
22 |
21
|
cbvrabv |
|
23 |
|
simpr |
|
24 |
|
sneq |
|
25 |
24
|
imaeq2d |
|
26 |
25
|
eleq2d |
|
27 |
26
|
ralbidv |
|
28 |
27
|
2rexbidv |
|
29 |
28
|
ralbidv |
|
30 |
29
|
cbvrexvw |
|
31 |
23 30
|
sylnib |
|
32 |
|
rabn0 |
|
33 |
|
rexnal |
|
34 |
32 33
|
bitri |
|
35 |
34
|
ralbii |
|
36 |
|
ralnex |
|
37 |
35 36
|
bitri |
|
38 |
31 37
|
sylibr |
|
39 |
1 2 22 38
|
vdwnnlem3 |
|
40 |
|
iman |
|
41 |
39 40
|
mpbir |
|