Description: Van der Waerden's theorem, infinitary version. For any finite coloring F of the positive integers, there is a color c that contains arbitrarily long arithmetic progressions. (Contributed by Mario Carneiro, 13-Sep-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | vdwnn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll | |
|
2 | simplr | |
|
3 | oveq1 | |
|
4 | 3 | oveq2d | |
5 | 4 | eleq1d | |
6 | 5 | cbvralvw | |
7 | oveq1 | |
|
8 | 7 | eleq1d | |
9 | 8 | ralbidv | |
10 | 6 9 | bitrid | |
11 | oveq2 | |
|
12 | 11 | oveq2d | |
13 | 12 | eleq1d | |
14 | 13 | ralbidv | |
15 | 10 14 | cbvrex2vw | |
16 | oveq1 | |
|
17 | 16 | oveq2d | |
18 | 17 | raleqdv | |
19 | 18 | 2rexbidv | |
20 | 15 19 | bitrid | |
21 | 20 | notbid | |
22 | 21 | cbvrabv | |
23 | simpr | |
|
24 | sneq | |
|
25 | 24 | imaeq2d | |
26 | 25 | eleq2d | |
27 | 26 | ralbidv | |
28 | 27 | 2rexbidv | |
29 | 28 | ralbidv | |
30 | 29 | cbvrexvw | |
31 | 23 30 | sylnib | |
32 | rabn0 | |
|
33 | rexnal | |
|
34 | 32 33 | bitri | |
35 | 34 | ralbii | |
36 | ralnex | |
|
37 | 35 36 | bitri | |
38 | 31 37 | sylibr | |
39 | 1 2 22 38 | vdwnnlem3 | |
40 | iman | |
|
41 | 39 40 | mpbir | |