| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpll |
|
| 2 |
|
simplr |
|
| 3 |
|
oveq1 |
|
| 4 |
3
|
oveq2d |
|
| 5 |
4
|
eleq1d |
|
| 6 |
5
|
cbvralvw |
|
| 7 |
|
oveq1 |
|
| 8 |
7
|
eleq1d |
|
| 9 |
8
|
ralbidv |
|
| 10 |
6 9
|
bitrid |
|
| 11 |
|
oveq2 |
|
| 12 |
11
|
oveq2d |
|
| 13 |
12
|
eleq1d |
|
| 14 |
13
|
ralbidv |
|
| 15 |
10 14
|
cbvrex2vw |
|
| 16 |
|
oveq1 |
|
| 17 |
16
|
oveq2d |
|
| 18 |
17
|
raleqdv |
|
| 19 |
18
|
2rexbidv |
|
| 20 |
15 19
|
bitrid |
|
| 21 |
20
|
notbid |
|
| 22 |
21
|
cbvrabv |
|
| 23 |
|
simpr |
|
| 24 |
|
sneq |
|
| 25 |
24
|
imaeq2d |
|
| 26 |
25
|
eleq2d |
|
| 27 |
26
|
ralbidv |
|
| 28 |
27
|
2rexbidv |
|
| 29 |
28
|
ralbidv |
|
| 30 |
29
|
cbvrexvw |
|
| 31 |
23 30
|
sylnib |
|
| 32 |
|
rabn0 |
|
| 33 |
|
rexnal |
|
| 34 |
32 33
|
bitri |
|
| 35 |
34
|
ralbii |
|
| 36 |
|
ralnex |
|
| 37 |
35 36
|
bitri |
|
| 38 |
31 37
|
sylibr |
|
| 39 |
1 2 22 38
|
vdwnnlem3 |
|
| 40 |
|
iman |
|
| 41 |
39 40
|
mpbir |
|