Metamath Proof Explorer


Theorem vdwnnlem3

Description: Lemma for vdwnn . (Contributed by Mario Carneiro, 13-Sep-2014) (Proof shortened by AV, 27-Sep-2020)

Ref Expression
Hypotheses vdwnn.1 φ R Fin
vdwnn.2 φ F : R
vdwnn.3 S = k | ¬ a d m 0 k 1 a + m d F -1 c
vdwnn.4 φ c R S
Assertion vdwnnlem3 ¬ φ

Proof

Step Hyp Ref Expression
1 vdwnn.1 φ R Fin
2 vdwnn.2 φ F : R
3 vdwnn.3 S = k | ¬ a d m 0 k 1 a + m d F -1 c
4 vdwnn.4 φ c R S
5 3 ssrab3 S
6 nnuz = 1
7 5 6 sseqtri S 1
8 4 r19.21bi φ c R S
9 infssuzcl S 1 S sup S < S
10 7 8 9 sylancr φ c R sup S < S
11 5 10 sselid φ c R sup S <
12 11 nnred φ c R sup S <
13 12 ralrimiva φ c R sup S <
14 fimaxre3 R Fin c R sup S < x c R sup S < x
15 1 13 14 syl2anc φ x c R sup S < x
16 1nn 1
17 ffvelrn F : R 1 F 1 R
18 2 16 17 sylancl φ F 1 R
19 18 ne0d φ R
20 19 adantr φ x R
21 r19.2z R c R sup S < x c R sup S < x
22 21 ex R c R sup S < x c R sup S < x
23 20 22 syl φ x c R sup S < x c R sup S < x
24 simplr φ x c R x
25 fllep1 x x x + 1
26 24 25 syl φ x c R x x + 1
27 12 adantlr φ x c R sup S <
28 24 flcld φ x c R x
29 28 peano2zd φ x c R x + 1
30 29 zred φ x c R x + 1
31 letr sup S < x x + 1 sup S < x x x + 1 sup S < x + 1
32 27 24 30 31 syl3anc φ x c R sup S < x x x + 1 sup S < x + 1
33 26 32 mpan2d φ x c R sup S < x sup S < x + 1
34 11 adantlr φ x c R sup S <
35 34 nnzd φ x c R sup S <
36 eluz sup S < x + 1 x + 1 sup S < sup S < x + 1
37 35 29 36 syl2anc φ x c R x + 1 sup S < sup S < x + 1
38 simpll φ x c R φ
39 10 adantlr φ x c R sup S < S
40 1 2 3 vdwnnlem2 φ x + 1 sup S < sup S < S x + 1 S
41 40 impancom φ sup S < S x + 1 sup S < x + 1 S
42 38 39 41 syl2anc φ x c R x + 1 sup S < x + 1 S
43 37 42 sylbird φ x c R sup S < x + 1 x + 1 S
44 33 43 syld φ x c R sup S < x x + 1 S
45 5 sseli x + 1 S x + 1
46 45 nnnn0d x + 1 S x + 1 0
47 44 46 syl6 φ x c R sup S < x x + 1 0
48 47 rexlimdva φ x c R sup S < x x + 1 0
49 1 adantr φ x + 1 0 R Fin
50 2 adantr φ x + 1 0 F : R
51 simpr φ x + 1 0 x + 1 0
52 vdwnnlem1 R Fin F : R x + 1 0 c R a d m 0 x + 1 - 1 a + m d F -1 c
53 49 50 51 52 syl3anc φ x + 1 0 c R a d m 0 x + 1 - 1 a + m d F -1 c
54 53 ex φ x + 1 0 c R a d m 0 x + 1 - 1 a + m d F -1 c
55 54 adantr φ x x + 1 0 c R a d m 0 x + 1 - 1 a + m d F -1 c
56 23 48 55 3syld φ x c R sup S < x c R a d m 0 x + 1 - 1 a + m d F -1 c
57 oveq1 k = x + 1 k 1 = x + 1 - 1
58 57 oveq2d k = x + 1 0 k 1 = 0 x + 1 - 1
59 58 raleqdv k = x + 1 m 0 k 1 a + m d F -1 c m 0 x + 1 - 1 a + m d F -1 c
60 59 2rexbidv k = x + 1 a d m 0 k 1 a + m d F -1 c a d m 0 x + 1 - 1 a + m d F -1 c
61 60 notbid k = x + 1 ¬ a d m 0 k 1 a + m d F -1 c ¬ a d m 0 x + 1 - 1 a + m d F -1 c
62 61 3 elrab2 x + 1 S x + 1 ¬ a d m 0 x + 1 - 1 a + m d F -1 c
63 62 simprbi x + 1 S ¬ a d m 0 x + 1 - 1 a + m d F -1 c
64 44 63 syl6 φ x c R sup S < x ¬ a d m 0 x + 1 - 1 a + m d F -1 c
65 64 ralimdva φ x c R sup S < x c R ¬ a d m 0 x + 1 - 1 a + m d F -1 c
66 ralnex c R ¬ a d m 0 x + 1 - 1 a + m d F -1 c ¬ c R a d m 0 x + 1 - 1 a + m d F -1 c
67 65 66 syl6ib φ x c R sup S < x ¬ c R a d m 0 x + 1 - 1 a + m d F -1 c
68 56 67 pm2.65d φ x ¬ c R sup S < x
69 68 nrexdv φ ¬ x c R sup S < x
70 15 69 pm2.65i ¬ φ