| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vdwnn.1 |
|
| 2 |
|
vdwnn.2 |
|
| 3 |
|
vdwnn.3 |
|
| 4 |
|
vdwnn.4 |
|
| 5 |
3
|
ssrab3 |
|
| 6 |
|
nnuz |
|
| 7 |
5 6
|
sseqtri |
|
| 8 |
4
|
r19.21bi |
|
| 9 |
|
infssuzcl |
|
| 10 |
7 8 9
|
sylancr |
|
| 11 |
5 10
|
sselid |
|
| 12 |
11
|
nnred |
|
| 13 |
12
|
ralrimiva |
|
| 14 |
|
fimaxre3 |
|
| 15 |
1 13 14
|
syl2anc |
|
| 16 |
|
1nn |
|
| 17 |
|
ffvelcdm |
|
| 18 |
2 16 17
|
sylancl |
|
| 19 |
18
|
ne0d |
|
| 20 |
19
|
adantr |
|
| 21 |
|
r19.2z |
|
| 22 |
21
|
ex |
|
| 23 |
20 22
|
syl |
|
| 24 |
|
simplr |
|
| 25 |
|
fllep1 |
|
| 26 |
24 25
|
syl |
|
| 27 |
12
|
adantlr |
|
| 28 |
24
|
flcld |
|
| 29 |
28
|
peano2zd |
|
| 30 |
29
|
zred |
|
| 31 |
|
letr |
|
| 32 |
27 24 30 31
|
syl3anc |
|
| 33 |
26 32
|
mpan2d |
|
| 34 |
11
|
adantlr |
|
| 35 |
34
|
nnzd |
|
| 36 |
|
eluz |
|
| 37 |
35 29 36
|
syl2anc |
|
| 38 |
|
simpll |
|
| 39 |
10
|
adantlr |
|
| 40 |
1 2 3
|
vdwnnlem2 |
|
| 41 |
40
|
impancom |
|
| 42 |
38 39 41
|
syl2anc |
|
| 43 |
37 42
|
sylbird |
|
| 44 |
33 43
|
syld |
|
| 45 |
5
|
sseli |
|
| 46 |
45
|
nnnn0d |
|
| 47 |
44 46
|
syl6 |
|
| 48 |
47
|
rexlimdva |
|
| 49 |
1
|
adantr |
|
| 50 |
2
|
adantr |
|
| 51 |
|
simpr |
|
| 52 |
|
vdwnnlem1 |
|
| 53 |
49 50 51 52
|
syl3anc |
|
| 54 |
53
|
ex |
|
| 55 |
54
|
adantr |
|
| 56 |
23 48 55
|
3syld |
|
| 57 |
|
oveq1 |
|
| 58 |
57
|
oveq2d |
|
| 59 |
58
|
raleqdv |
|
| 60 |
59
|
2rexbidv |
|
| 61 |
60
|
notbid |
|
| 62 |
61 3
|
elrab2 |
|
| 63 |
62
|
simprbi |
|
| 64 |
44 63
|
syl6 |
|
| 65 |
64
|
ralimdva |
|
| 66 |
|
ralnex |
|
| 67 |
65 66
|
imbitrdi |
|
| 68 |
56 67
|
pm2.65d |
|
| 69 |
68
|
nrexdv |
|
| 70 |
15 69
|
pm2.65i |
|