Step |
Hyp |
Ref |
Expression |
1 |
|
vdwnn.1 |
|
2 |
|
vdwnn.2 |
|
3 |
|
vdwnn.3 |
|
4 |
|
eluzel2 |
|
5 |
|
peano2zm |
|
6 |
4 5
|
syl |
|
7 |
|
id |
|
8 |
4
|
zcnd |
|
9 |
|
ax-1cn |
|
10 |
|
npcan |
|
11 |
8 9 10
|
sylancl |
|
12 |
11
|
fveq2d |
|
13 |
7 12
|
eleqtrrd |
|
14 |
|
eluzp1m1 |
|
15 |
6 13 14
|
syl2anc |
|
16 |
15
|
ad2antlr |
|
17 |
|
fzss2 |
|
18 |
|
ssralv |
|
19 |
16 17 18
|
3syl |
|
20 |
19
|
reximdv |
|
21 |
20
|
reximdv |
|
22 |
21
|
con3d |
|
23 |
|
id |
|
24 |
|
simpr |
|
25 |
|
eluznn |
|
26 |
23 24 25
|
syl2anr |
|
27 |
22 26
|
jctild |
|
28 |
27
|
expimpd |
|
29 |
|
oveq1 |
|
30 |
29
|
oveq2d |
|
31 |
30
|
raleqdv |
|
32 |
31
|
2rexbidv |
|
33 |
32
|
notbid |
|
34 |
33 3
|
elrab2 |
|
35 |
|
oveq1 |
|
36 |
35
|
oveq2d |
|
37 |
36
|
raleqdv |
|
38 |
37
|
2rexbidv |
|
39 |
38
|
notbid |
|
40 |
39 3
|
elrab2 |
|
41 |
28 34 40
|
3imtr4g |
|