Metamath Proof Explorer


Theorem vdwnnlem2

Description: Lemma for vdwnn . The set of all "bad" k for the theorem is upwards-closed, because a long AP implies a short AP. (Contributed by Mario Carneiro, 13-Sep-2014)

Ref Expression
Hypotheses vdwnn.1 φ R Fin
vdwnn.2 φ F : R
vdwnn.3 S = k | ¬ a d m 0 k 1 a + m d F -1 c
Assertion vdwnnlem2 φ B A A S B S

Proof

Step Hyp Ref Expression
1 vdwnn.1 φ R Fin
2 vdwnn.2 φ F : R
3 vdwnn.3 S = k | ¬ a d m 0 k 1 a + m d F -1 c
4 eluzel2 B A A
5 peano2zm A A 1
6 4 5 syl B A A 1
7 id B A B A
8 4 zcnd B A A
9 ax-1cn 1
10 npcan A 1 A - 1 + 1 = A
11 8 9 10 sylancl B A A - 1 + 1 = A
12 11 fveq2d B A A - 1 + 1 = A
13 7 12 eleqtrrd B A B A - 1 + 1
14 eluzp1m1 A 1 B A - 1 + 1 B 1 A 1
15 6 13 14 syl2anc B A B 1 A 1
16 15 ad2antlr φ B A A B 1 A 1
17 fzss2 B 1 A 1 0 A 1 0 B 1
18 ssralv 0 A 1 0 B 1 m 0 B 1 a + m d F -1 c m 0 A 1 a + m d F -1 c
19 16 17 18 3syl φ B A A m 0 B 1 a + m d F -1 c m 0 A 1 a + m d F -1 c
20 19 reximdv φ B A A d m 0 B 1 a + m d F -1 c d m 0 A 1 a + m d F -1 c
21 20 reximdv φ B A A a d m 0 B 1 a + m d F -1 c a d m 0 A 1 a + m d F -1 c
22 21 con3d φ B A A ¬ a d m 0 A 1 a + m d F -1 c ¬ a d m 0 B 1 a + m d F -1 c
23 id A A
24 simpr φ B A B A
25 eluznn A B A B
26 23 24 25 syl2anr φ B A A B
27 22 26 jctild φ B A A ¬ a d m 0 A 1 a + m d F -1 c B ¬ a d m 0 B 1 a + m d F -1 c
28 27 expimpd φ B A A ¬ a d m 0 A 1 a + m d F -1 c B ¬ a d m 0 B 1 a + m d F -1 c
29 oveq1 k = A k 1 = A 1
30 29 oveq2d k = A 0 k 1 = 0 A 1
31 30 raleqdv k = A m 0 k 1 a + m d F -1 c m 0 A 1 a + m d F -1 c
32 31 2rexbidv k = A a d m 0 k 1 a + m d F -1 c a d m 0 A 1 a + m d F -1 c
33 32 notbid k = A ¬ a d m 0 k 1 a + m d F -1 c ¬ a d m 0 A 1 a + m d F -1 c
34 33 3 elrab2 A S A ¬ a d m 0 A 1 a + m d F -1 c
35 oveq1 k = B k 1 = B 1
36 35 oveq2d k = B 0 k 1 = 0 B 1
37 36 raleqdv k = B m 0 k 1 a + m d F -1 c m 0 B 1 a + m d F -1 c
38 37 2rexbidv k = B a d m 0 k 1 a + m d F -1 c a d m 0 B 1 a + m d F -1 c
39 38 notbid k = B ¬ a d m 0 k 1 a + m d F -1 c ¬ a d m 0 B 1 a + m d F -1 c
40 39 3 elrab2 B S B ¬ a d m 0 B 1 a + m d F -1 c
41 28 34 40 3imtr4g φ B A A S B S