Step |
Hyp |
Ref |
Expression |
1 |
|
vdwnn.1 |
⊢ ( 𝜑 → 𝑅 ∈ Fin ) |
2 |
|
vdwnn.2 |
⊢ ( 𝜑 → 𝐹 : ℕ ⟶ 𝑅 ) |
3 |
|
vdwnn.3 |
⊢ 𝑆 = { 𝑘 ∈ ℕ ∣ ¬ ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ∀ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑐 } ) } |
4 |
|
vdwnn.4 |
⊢ ( 𝜑 → ∀ 𝑐 ∈ 𝑅 𝑆 ≠ ∅ ) |
5 |
3
|
ssrab3 |
⊢ 𝑆 ⊆ ℕ |
6 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
7 |
5 6
|
sseqtri |
⊢ 𝑆 ⊆ ( ℤ≥ ‘ 1 ) |
8 |
4
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝑅 ) → 𝑆 ≠ ∅ ) |
9 |
|
infssuzcl |
⊢ ( ( 𝑆 ⊆ ( ℤ≥ ‘ 1 ) ∧ 𝑆 ≠ ∅ ) → inf ( 𝑆 , ℝ , < ) ∈ 𝑆 ) |
10 |
7 8 9
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝑅 ) → inf ( 𝑆 , ℝ , < ) ∈ 𝑆 ) |
11 |
5 10
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝑅 ) → inf ( 𝑆 , ℝ , < ) ∈ ℕ ) |
12 |
11
|
nnred |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝑅 ) → inf ( 𝑆 , ℝ , < ) ∈ ℝ ) |
13 |
12
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑐 ∈ 𝑅 inf ( 𝑆 , ℝ , < ) ∈ ℝ ) |
14 |
|
fimaxre3 |
⊢ ( ( 𝑅 ∈ Fin ∧ ∀ 𝑐 ∈ 𝑅 inf ( 𝑆 , ℝ , < ) ∈ ℝ ) → ∃ 𝑥 ∈ ℝ ∀ 𝑐 ∈ 𝑅 inf ( 𝑆 , ℝ , < ) ≤ 𝑥 ) |
15 |
1 13 14
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑐 ∈ 𝑅 inf ( 𝑆 , ℝ , < ) ≤ 𝑥 ) |
16 |
|
1nn |
⊢ 1 ∈ ℕ |
17 |
|
ffvelrn |
⊢ ( ( 𝐹 : ℕ ⟶ 𝑅 ∧ 1 ∈ ℕ ) → ( 𝐹 ‘ 1 ) ∈ 𝑅 ) |
18 |
2 16 17
|
sylancl |
⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) ∈ 𝑅 ) |
19 |
18
|
ne0d |
⊢ ( 𝜑 → 𝑅 ≠ ∅ ) |
20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 𝑅 ≠ ∅ ) |
21 |
|
r19.2z |
⊢ ( ( 𝑅 ≠ ∅ ∧ ∀ 𝑐 ∈ 𝑅 inf ( 𝑆 , ℝ , < ) ≤ 𝑥 ) → ∃ 𝑐 ∈ 𝑅 inf ( 𝑆 , ℝ , < ) ≤ 𝑥 ) |
22 |
21
|
ex |
⊢ ( 𝑅 ≠ ∅ → ( ∀ 𝑐 ∈ 𝑅 inf ( 𝑆 , ℝ , < ) ≤ 𝑥 → ∃ 𝑐 ∈ 𝑅 inf ( 𝑆 , ℝ , < ) ≤ 𝑥 ) ) |
23 |
20 22
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ∀ 𝑐 ∈ 𝑅 inf ( 𝑆 , ℝ , < ) ≤ 𝑥 → ∃ 𝑐 ∈ 𝑅 inf ( 𝑆 , ℝ , < ) ≤ 𝑥 ) ) |
24 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑐 ∈ 𝑅 ) → 𝑥 ∈ ℝ ) |
25 |
|
fllep1 |
⊢ ( 𝑥 ∈ ℝ → 𝑥 ≤ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) |
26 |
24 25
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑐 ∈ 𝑅 ) → 𝑥 ≤ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) |
27 |
12
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑐 ∈ 𝑅 ) → inf ( 𝑆 , ℝ , < ) ∈ ℝ ) |
28 |
24
|
flcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑐 ∈ 𝑅 ) → ( ⌊ ‘ 𝑥 ) ∈ ℤ ) |
29 |
28
|
peano2zd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑐 ∈ 𝑅 ) → ( ( ⌊ ‘ 𝑥 ) + 1 ) ∈ ℤ ) |
30 |
29
|
zred |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑐 ∈ 𝑅 ) → ( ( ⌊ ‘ 𝑥 ) + 1 ) ∈ ℝ ) |
31 |
|
letr |
⊢ ( ( inf ( 𝑆 , ℝ , < ) ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ ( ( ⌊ ‘ 𝑥 ) + 1 ) ∈ ℝ ) → ( ( inf ( 𝑆 , ℝ , < ) ≤ 𝑥 ∧ 𝑥 ≤ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) → inf ( 𝑆 , ℝ , < ) ≤ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ) |
32 |
27 24 30 31
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑐 ∈ 𝑅 ) → ( ( inf ( 𝑆 , ℝ , < ) ≤ 𝑥 ∧ 𝑥 ≤ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) → inf ( 𝑆 , ℝ , < ) ≤ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ) |
33 |
26 32
|
mpan2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑐 ∈ 𝑅 ) → ( inf ( 𝑆 , ℝ , < ) ≤ 𝑥 → inf ( 𝑆 , ℝ , < ) ≤ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ) |
34 |
11
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑐 ∈ 𝑅 ) → inf ( 𝑆 , ℝ , < ) ∈ ℕ ) |
35 |
34
|
nnzd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑐 ∈ 𝑅 ) → inf ( 𝑆 , ℝ , < ) ∈ ℤ ) |
36 |
|
eluz |
⊢ ( ( inf ( 𝑆 , ℝ , < ) ∈ ℤ ∧ ( ( ⌊ ‘ 𝑥 ) + 1 ) ∈ ℤ ) → ( ( ( ⌊ ‘ 𝑥 ) + 1 ) ∈ ( ℤ≥ ‘ inf ( 𝑆 , ℝ , < ) ) ↔ inf ( 𝑆 , ℝ , < ) ≤ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ) |
37 |
35 29 36
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑐 ∈ 𝑅 ) → ( ( ( ⌊ ‘ 𝑥 ) + 1 ) ∈ ( ℤ≥ ‘ inf ( 𝑆 , ℝ , < ) ) ↔ inf ( 𝑆 , ℝ , < ) ≤ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ) |
38 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑐 ∈ 𝑅 ) → 𝜑 ) |
39 |
10
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑐 ∈ 𝑅 ) → inf ( 𝑆 , ℝ , < ) ∈ 𝑆 ) |
40 |
1 2 3
|
vdwnnlem2 |
⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑥 ) + 1 ) ∈ ( ℤ≥ ‘ inf ( 𝑆 , ℝ , < ) ) ) → ( inf ( 𝑆 , ℝ , < ) ∈ 𝑆 → ( ( ⌊ ‘ 𝑥 ) + 1 ) ∈ 𝑆 ) ) |
41 |
40
|
impancom |
⊢ ( ( 𝜑 ∧ inf ( 𝑆 , ℝ , < ) ∈ 𝑆 ) → ( ( ( ⌊ ‘ 𝑥 ) + 1 ) ∈ ( ℤ≥ ‘ inf ( 𝑆 , ℝ , < ) ) → ( ( ⌊ ‘ 𝑥 ) + 1 ) ∈ 𝑆 ) ) |
42 |
38 39 41
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑐 ∈ 𝑅 ) → ( ( ( ⌊ ‘ 𝑥 ) + 1 ) ∈ ( ℤ≥ ‘ inf ( 𝑆 , ℝ , < ) ) → ( ( ⌊ ‘ 𝑥 ) + 1 ) ∈ 𝑆 ) ) |
43 |
37 42
|
sylbird |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑐 ∈ 𝑅 ) → ( inf ( 𝑆 , ℝ , < ) ≤ ( ( ⌊ ‘ 𝑥 ) + 1 ) → ( ( ⌊ ‘ 𝑥 ) + 1 ) ∈ 𝑆 ) ) |
44 |
33 43
|
syld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑐 ∈ 𝑅 ) → ( inf ( 𝑆 , ℝ , < ) ≤ 𝑥 → ( ( ⌊ ‘ 𝑥 ) + 1 ) ∈ 𝑆 ) ) |
45 |
5
|
sseli |
⊢ ( ( ( ⌊ ‘ 𝑥 ) + 1 ) ∈ 𝑆 → ( ( ⌊ ‘ 𝑥 ) + 1 ) ∈ ℕ ) |
46 |
45
|
nnnn0d |
⊢ ( ( ( ⌊ ‘ 𝑥 ) + 1 ) ∈ 𝑆 → ( ( ⌊ ‘ 𝑥 ) + 1 ) ∈ ℕ0 ) |
47 |
44 46
|
syl6 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑐 ∈ 𝑅 ) → ( inf ( 𝑆 , ℝ , < ) ≤ 𝑥 → ( ( ⌊ ‘ 𝑥 ) + 1 ) ∈ ℕ0 ) ) |
48 |
47
|
rexlimdva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ∃ 𝑐 ∈ 𝑅 inf ( 𝑆 , ℝ , < ) ≤ 𝑥 → ( ( ⌊ ‘ 𝑥 ) + 1 ) ∈ ℕ0 ) ) |
49 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑥 ) + 1 ) ∈ ℕ0 ) → 𝑅 ∈ Fin ) |
50 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑥 ) + 1 ) ∈ ℕ0 ) → 𝐹 : ℕ ⟶ 𝑅 ) |
51 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑥 ) + 1 ) ∈ ℕ0 ) → ( ( ⌊ ‘ 𝑥 ) + 1 ) ∈ ℕ0 ) |
52 |
|
vdwnnlem1 |
⊢ ( ( 𝑅 ∈ Fin ∧ 𝐹 : ℕ ⟶ 𝑅 ∧ ( ( ⌊ ‘ 𝑥 ) + 1 ) ∈ ℕ0 ) → ∃ 𝑐 ∈ 𝑅 ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ∀ 𝑚 ∈ ( 0 ... ( ( ( ⌊ ‘ 𝑥 ) + 1 ) − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑐 } ) ) |
53 |
49 50 51 52
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑥 ) + 1 ) ∈ ℕ0 ) → ∃ 𝑐 ∈ 𝑅 ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ∀ 𝑚 ∈ ( 0 ... ( ( ( ⌊ ‘ 𝑥 ) + 1 ) − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑐 } ) ) |
54 |
53
|
ex |
⊢ ( 𝜑 → ( ( ( ⌊ ‘ 𝑥 ) + 1 ) ∈ ℕ0 → ∃ 𝑐 ∈ 𝑅 ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ∀ 𝑚 ∈ ( 0 ... ( ( ( ⌊ ‘ 𝑥 ) + 1 ) − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑐 } ) ) ) |
55 |
54
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ( ( ⌊ ‘ 𝑥 ) + 1 ) ∈ ℕ0 → ∃ 𝑐 ∈ 𝑅 ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ∀ 𝑚 ∈ ( 0 ... ( ( ( ⌊ ‘ 𝑥 ) + 1 ) − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑐 } ) ) ) |
56 |
23 48 55
|
3syld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ∀ 𝑐 ∈ 𝑅 inf ( 𝑆 , ℝ , < ) ≤ 𝑥 → ∃ 𝑐 ∈ 𝑅 ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ∀ 𝑚 ∈ ( 0 ... ( ( ( ⌊ ‘ 𝑥 ) + 1 ) − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑐 } ) ) ) |
57 |
|
oveq1 |
⊢ ( 𝑘 = ( ( ⌊ ‘ 𝑥 ) + 1 ) → ( 𝑘 − 1 ) = ( ( ( ⌊ ‘ 𝑥 ) + 1 ) − 1 ) ) |
58 |
57
|
oveq2d |
⊢ ( 𝑘 = ( ( ⌊ ‘ 𝑥 ) + 1 ) → ( 0 ... ( 𝑘 − 1 ) ) = ( 0 ... ( ( ( ⌊ ‘ 𝑥 ) + 1 ) − 1 ) ) ) |
59 |
58
|
raleqdv |
⊢ ( 𝑘 = ( ( ⌊ ‘ 𝑥 ) + 1 ) → ( ∀ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑐 } ) ↔ ∀ 𝑚 ∈ ( 0 ... ( ( ( ⌊ ‘ 𝑥 ) + 1 ) − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑐 } ) ) ) |
60 |
59
|
2rexbidv |
⊢ ( 𝑘 = ( ( ⌊ ‘ 𝑥 ) + 1 ) → ( ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ∀ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑐 } ) ↔ ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ∀ 𝑚 ∈ ( 0 ... ( ( ( ⌊ ‘ 𝑥 ) + 1 ) − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑐 } ) ) ) |
61 |
60
|
notbid |
⊢ ( 𝑘 = ( ( ⌊ ‘ 𝑥 ) + 1 ) → ( ¬ ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ∀ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑐 } ) ↔ ¬ ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ∀ 𝑚 ∈ ( 0 ... ( ( ( ⌊ ‘ 𝑥 ) + 1 ) − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑐 } ) ) ) |
62 |
61 3
|
elrab2 |
⊢ ( ( ( ⌊ ‘ 𝑥 ) + 1 ) ∈ 𝑆 ↔ ( ( ( ⌊ ‘ 𝑥 ) + 1 ) ∈ ℕ ∧ ¬ ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ∀ 𝑚 ∈ ( 0 ... ( ( ( ⌊ ‘ 𝑥 ) + 1 ) − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑐 } ) ) ) |
63 |
62
|
simprbi |
⊢ ( ( ( ⌊ ‘ 𝑥 ) + 1 ) ∈ 𝑆 → ¬ ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ∀ 𝑚 ∈ ( 0 ... ( ( ( ⌊ ‘ 𝑥 ) + 1 ) − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑐 } ) ) |
64 |
44 63
|
syl6 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑐 ∈ 𝑅 ) → ( inf ( 𝑆 , ℝ , < ) ≤ 𝑥 → ¬ ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ∀ 𝑚 ∈ ( 0 ... ( ( ( ⌊ ‘ 𝑥 ) + 1 ) − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑐 } ) ) ) |
65 |
64
|
ralimdva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ∀ 𝑐 ∈ 𝑅 inf ( 𝑆 , ℝ , < ) ≤ 𝑥 → ∀ 𝑐 ∈ 𝑅 ¬ ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ∀ 𝑚 ∈ ( 0 ... ( ( ( ⌊ ‘ 𝑥 ) + 1 ) − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑐 } ) ) ) |
66 |
|
ralnex |
⊢ ( ∀ 𝑐 ∈ 𝑅 ¬ ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ∀ 𝑚 ∈ ( 0 ... ( ( ( ⌊ ‘ 𝑥 ) + 1 ) − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑐 } ) ↔ ¬ ∃ 𝑐 ∈ 𝑅 ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ∀ 𝑚 ∈ ( 0 ... ( ( ( ⌊ ‘ 𝑥 ) + 1 ) − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑐 } ) ) |
67 |
65 66
|
syl6ib |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ∀ 𝑐 ∈ 𝑅 inf ( 𝑆 , ℝ , < ) ≤ 𝑥 → ¬ ∃ 𝑐 ∈ 𝑅 ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ∀ 𝑚 ∈ ( 0 ... ( ( ( ⌊ ‘ 𝑥 ) + 1 ) − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑐 } ) ) ) |
68 |
56 67
|
pm2.65d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ¬ ∀ 𝑐 ∈ 𝑅 inf ( 𝑆 , ℝ , < ) ≤ 𝑥 ) |
69 |
68
|
nrexdv |
⊢ ( 𝜑 → ¬ ∃ 𝑥 ∈ ℝ ∀ 𝑐 ∈ 𝑅 inf ( 𝑆 , ℝ , < ) ≤ 𝑥 ) |
70 |
15 69
|
pm2.65i |
⊢ ¬ 𝜑 |