Metamath Proof Explorer


Theorem vdw

Description: Van der Waerden's theorem. For any finite coloring R and integer K , there is an N such that every coloring function from 1 ... N to R contains a monochromatic arithmetic progression (which written out in full means that there is a color c and base, increment values a , d such that all the numbers a , a + d , ... , a + ( k - 1 ) d lie in the preimage of { c } , i.e. they are all in 1 ... N and f evaluated at each one yields c ). (Contributed by Mario Carneiro, 13-Sep-2014)

Ref Expression
Assertion vdw ( ( 𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0 ) → ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑅m ( 1 ... 𝑛 ) ) ∃ 𝑐𝑅𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ∀ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( 𝑓 “ { 𝑐 } ) )

Proof

Step Hyp Ref Expression
1 simpl ( ( 𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0 ) → 𝑅 ∈ Fin )
2 simpr ( ( 𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0 ) → 𝐾 ∈ ℕ0 )
3 1 2 vdwlem13 ( ( 𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0 ) → ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑅m ( 1 ... 𝑛 ) ) 𝐾 MonoAP 𝑓 )
4 ovex ( 1 ... 𝑛 ) ∈ V
5 simpllr ( ( ( ( 𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑓 ∈ ( 𝑅m ( 1 ... 𝑛 ) ) ) → 𝐾 ∈ ℕ0 )
6 simpll ( ( ( 𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ ) → 𝑅 ∈ Fin )
7 elmapg ( ( 𝑅 ∈ Fin ∧ ( 1 ... 𝑛 ) ∈ V ) → ( 𝑓 ∈ ( 𝑅m ( 1 ... 𝑛 ) ) ↔ 𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) )
8 6 4 7 sylancl ( ( ( 𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ ) → ( 𝑓 ∈ ( 𝑅m ( 1 ... 𝑛 ) ) ↔ 𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) )
9 8 biimpa ( ( ( ( 𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑓 ∈ ( 𝑅m ( 1 ... 𝑛 ) ) ) → 𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 )
10 simplr ( ( ( ( 𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑓 ∈ ( 𝑅m ( 1 ... 𝑛 ) ) ) → 𝑛 ∈ ℕ )
11 nnuz ℕ = ( ℤ ‘ 1 )
12 10 11 eleqtrdi ( ( ( ( 𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑓 ∈ ( 𝑅m ( 1 ... 𝑛 ) ) ) → 𝑛 ∈ ( ℤ ‘ 1 ) )
13 eluzfz1 ( 𝑛 ∈ ( ℤ ‘ 1 ) → 1 ∈ ( 1 ... 𝑛 ) )
14 12 13 syl ( ( ( ( 𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑓 ∈ ( 𝑅m ( 1 ... 𝑛 ) ) ) → 1 ∈ ( 1 ... 𝑛 ) )
15 4 5 9 14 vdwmc2 ( ( ( ( 𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑓 ∈ ( 𝑅m ( 1 ... 𝑛 ) ) ) → ( 𝐾 MonoAP 𝑓 ↔ ∃ 𝑐𝑅𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ∀ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( 𝑓 “ { 𝑐 } ) ) )
16 15 ralbidva ( ( ( 𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ ) → ( ∀ 𝑓 ∈ ( 𝑅m ( 1 ... 𝑛 ) ) 𝐾 MonoAP 𝑓 ↔ ∀ 𝑓 ∈ ( 𝑅m ( 1 ... 𝑛 ) ) ∃ 𝑐𝑅𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ∀ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( 𝑓 “ { 𝑐 } ) ) )
17 16 rexbidva ( ( 𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0 ) → ( ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑅m ( 1 ... 𝑛 ) ) 𝐾 MonoAP 𝑓 ↔ ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑅m ( 1 ... 𝑛 ) ) ∃ 𝑐𝑅𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ∀ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( 𝑓 “ { 𝑐 } ) ) )
18 3 17 mpbid ( ( 𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0 ) → ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑅m ( 1 ... 𝑛 ) ) ∃ 𝑐𝑅𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ∀ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( 𝑓 “ { 𝑐 } ) )