Step |
Hyp |
Ref |
Expression |
1 |
|
vdw.r |
⊢ ( 𝜑 → 𝑅 ∈ Fin ) |
2 |
|
vdw.k |
⊢ ( 𝜑 → 𝐾 ∈ ℕ0 ) |
3 |
|
elnn1uz2 |
⊢ ( 𝐾 ∈ ℕ ↔ ( 𝐾 = 1 ∨ 𝐾 ∈ ( ℤ≥ ‘ 2 ) ) ) |
4 |
|
ovex |
⊢ ( 1 ... 1 ) ∈ V |
5 |
|
elmapg |
⊢ ( ( 𝑅 ∈ Fin ∧ ( 1 ... 1 ) ∈ V ) → ( 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 1 ) ) ↔ 𝑓 : ( 1 ... 1 ) ⟶ 𝑅 ) ) |
6 |
1 4 5
|
sylancl |
⊢ ( 𝜑 → ( 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 1 ) ) ↔ 𝑓 : ( 1 ... 1 ) ⟶ 𝑅 ) ) |
7 |
6
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 1 ) ) ) → 𝑓 : ( 1 ... 1 ) ⟶ 𝑅 ) |
8 |
|
1nn |
⊢ 1 ∈ ℕ |
9 |
|
vdwap1 |
⊢ ( ( 1 ∈ ℕ ∧ 1 ∈ ℕ ) → ( 1 ( AP ‘ 1 ) 1 ) = { 1 } ) |
10 |
8 8 9
|
mp2an |
⊢ ( 1 ( AP ‘ 1 ) 1 ) = { 1 } |
11 |
|
1z |
⊢ 1 ∈ ℤ |
12 |
|
elfz3 |
⊢ ( 1 ∈ ℤ → 1 ∈ ( 1 ... 1 ) ) |
13 |
11 12
|
mp1i |
⊢ ( ( 𝜑 ∧ 𝑓 : ( 1 ... 1 ) ⟶ 𝑅 ) → 1 ∈ ( 1 ... 1 ) ) |
14 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑓 : ( 1 ... 1 ) ⟶ 𝑅 ) → ( 𝑓 ‘ 1 ) = ( 𝑓 ‘ 1 ) ) |
15 |
|
ffn |
⊢ ( 𝑓 : ( 1 ... 1 ) ⟶ 𝑅 → 𝑓 Fn ( 1 ... 1 ) ) |
16 |
15
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑓 : ( 1 ... 1 ) ⟶ 𝑅 ) → 𝑓 Fn ( 1 ... 1 ) ) |
17 |
|
fniniseg |
⊢ ( 𝑓 Fn ( 1 ... 1 ) → ( 1 ∈ ( ◡ 𝑓 “ { ( 𝑓 ‘ 1 ) } ) ↔ ( 1 ∈ ( 1 ... 1 ) ∧ ( 𝑓 ‘ 1 ) = ( 𝑓 ‘ 1 ) ) ) ) |
18 |
16 17
|
syl |
⊢ ( ( 𝜑 ∧ 𝑓 : ( 1 ... 1 ) ⟶ 𝑅 ) → ( 1 ∈ ( ◡ 𝑓 “ { ( 𝑓 ‘ 1 ) } ) ↔ ( 1 ∈ ( 1 ... 1 ) ∧ ( 𝑓 ‘ 1 ) = ( 𝑓 ‘ 1 ) ) ) ) |
19 |
13 14 18
|
mpbir2and |
⊢ ( ( 𝜑 ∧ 𝑓 : ( 1 ... 1 ) ⟶ 𝑅 ) → 1 ∈ ( ◡ 𝑓 “ { ( 𝑓 ‘ 1 ) } ) ) |
20 |
19
|
snssd |
⊢ ( ( 𝜑 ∧ 𝑓 : ( 1 ... 1 ) ⟶ 𝑅 ) → { 1 } ⊆ ( ◡ 𝑓 “ { ( 𝑓 ‘ 1 ) } ) ) |
21 |
10 20
|
eqsstrid |
⊢ ( ( 𝜑 ∧ 𝑓 : ( 1 ... 1 ) ⟶ 𝑅 ) → ( 1 ( AP ‘ 1 ) 1 ) ⊆ ( ◡ 𝑓 “ { ( 𝑓 ‘ 1 ) } ) ) |
22 |
7 21
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 1 ) ) ) → ( 1 ( AP ‘ 1 ) 1 ) ⊆ ( ◡ 𝑓 “ { ( 𝑓 ‘ 1 ) } ) ) |
23 |
22
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 1 ) ) ( 1 ( AP ‘ 1 ) 1 ) ⊆ ( ◡ 𝑓 “ { ( 𝑓 ‘ 1 ) } ) ) |
24 |
|
fveq2 |
⊢ ( 𝐾 = 1 → ( AP ‘ 𝐾 ) = ( AP ‘ 1 ) ) |
25 |
24
|
oveqd |
⊢ ( 𝐾 = 1 → ( 1 ( AP ‘ 𝐾 ) 1 ) = ( 1 ( AP ‘ 1 ) 1 ) ) |
26 |
25
|
sseq1d |
⊢ ( 𝐾 = 1 → ( ( 1 ( AP ‘ 𝐾 ) 1 ) ⊆ ( ◡ 𝑓 “ { ( 𝑓 ‘ 1 ) } ) ↔ ( 1 ( AP ‘ 1 ) 1 ) ⊆ ( ◡ 𝑓 “ { ( 𝑓 ‘ 1 ) } ) ) ) |
27 |
26
|
ralbidv |
⊢ ( 𝐾 = 1 → ( ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 1 ) ) ( 1 ( AP ‘ 𝐾 ) 1 ) ⊆ ( ◡ 𝑓 “ { ( 𝑓 ‘ 1 ) } ) ↔ ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 1 ) ) ( 1 ( AP ‘ 1 ) 1 ) ⊆ ( ◡ 𝑓 “ { ( 𝑓 ‘ 1 ) } ) ) ) |
28 |
23 27
|
syl5ibrcom |
⊢ ( 𝜑 → ( 𝐾 = 1 → ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 1 ) ) ( 1 ( AP ‘ 𝐾 ) 1 ) ⊆ ( ◡ 𝑓 “ { ( 𝑓 ‘ 1 ) } ) ) ) |
29 |
|
oveq1 |
⊢ ( 𝑎 = 1 → ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) = ( 1 ( AP ‘ 𝐾 ) 𝑑 ) ) |
30 |
29
|
sseq1d |
⊢ ( 𝑎 = 1 → ( ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝑓 “ { ( 𝑓 ‘ 1 ) } ) ↔ ( 1 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝑓 “ { ( 𝑓 ‘ 1 ) } ) ) ) |
31 |
|
oveq2 |
⊢ ( 𝑑 = 1 → ( 1 ( AP ‘ 𝐾 ) 𝑑 ) = ( 1 ( AP ‘ 𝐾 ) 1 ) ) |
32 |
31
|
sseq1d |
⊢ ( 𝑑 = 1 → ( ( 1 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝑓 “ { ( 𝑓 ‘ 1 ) } ) ↔ ( 1 ( AP ‘ 𝐾 ) 1 ) ⊆ ( ◡ 𝑓 “ { ( 𝑓 ‘ 1 ) } ) ) ) |
33 |
30 32
|
rspc2ev |
⊢ ( ( 1 ∈ ℕ ∧ 1 ∈ ℕ ∧ ( 1 ( AP ‘ 𝐾 ) 1 ) ⊆ ( ◡ 𝑓 “ { ( 𝑓 ‘ 1 ) } ) ) → ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝑓 “ { ( 𝑓 ‘ 1 ) } ) ) |
34 |
8 8 33
|
mp3an12 |
⊢ ( ( 1 ( AP ‘ 𝐾 ) 1 ) ⊆ ( ◡ 𝑓 “ { ( 𝑓 ‘ 1 ) } ) → ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝑓 “ { ( 𝑓 ‘ 1 ) } ) ) |
35 |
|
fvex |
⊢ ( 𝑓 ‘ 1 ) ∈ V |
36 |
|
sneq |
⊢ ( 𝑐 = ( 𝑓 ‘ 1 ) → { 𝑐 } = { ( 𝑓 ‘ 1 ) } ) |
37 |
36
|
imaeq2d |
⊢ ( 𝑐 = ( 𝑓 ‘ 1 ) → ( ◡ 𝑓 “ { 𝑐 } ) = ( ◡ 𝑓 “ { ( 𝑓 ‘ 1 ) } ) ) |
38 |
37
|
sseq2d |
⊢ ( 𝑐 = ( 𝑓 ‘ 1 ) → ( ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ↔ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝑓 “ { ( 𝑓 ‘ 1 ) } ) ) ) |
39 |
38
|
2rexbidv |
⊢ ( 𝑐 = ( 𝑓 ‘ 1 ) → ( ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ↔ ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝑓 “ { ( 𝑓 ‘ 1 ) } ) ) ) |
40 |
35 39
|
spcev |
⊢ ( ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝑓 “ { ( 𝑓 ‘ 1 ) } ) → ∃ 𝑐 ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ) |
41 |
34 40
|
syl |
⊢ ( ( 1 ( AP ‘ 𝐾 ) 1 ) ⊆ ( ◡ 𝑓 “ { ( 𝑓 ‘ 1 ) } ) → ∃ 𝑐 ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ) |
42 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 1 ) ) ) → 𝐾 ∈ ℕ0 ) |
43 |
4 42 7
|
vdwmc |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 1 ) ) ) → ( 𝐾 MonoAP 𝑓 ↔ ∃ 𝑐 ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ) ) |
44 |
41 43
|
syl5ibr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 1 ) ) ) → ( ( 1 ( AP ‘ 𝐾 ) 1 ) ⊆ ( ◡ 𝑓 “ { ( 𝑓 ‘ 1 ) } ) → 𝐾 MonoAP 𝑓 ) ) |
45 |
44
|
ralimdva |
⊢ ( 𝜑 → ( ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 1 ) ) ( 1 ( AP ‘ 𝐾 ) 1 ) ⊆ ( ◡ 𝑓 “ { ( 𝑓 ‘ 1 ) } ) → ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 1 ) ) 𝐾 MonoAP 𝑓 ) ) |
46 |
|
oveq2 |
⊢ ( 𝑛 = 1 → ( 1 ... 𝑛 ) = ( 1 ... 1 ) ) |
47 |
46
|
oveq2d |
⊢ ( 𝑛 = 1 → ( 𝑅 ↑m ( 1 ... 𝑛 ) ) = ( 𝑅 ↑m ( 1 ... 1 ) ) ) |
48 |
47
|
raleqdv |
⊢ ( 𝑛 = 1 → ( ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 𝑛 ) ) 𝐾 MonoAP 𝑓 ↔ ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 1 ) ) 𝐾 MonoAP 𝑓 ) ) |
49 |
48
|
rspcev |
⊢ ( ( 1 ∈ ℕ ∧ ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 1 ) ) 𝐾 MonoAP 𝑓 ) → ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 𝑛 ) ) 𝐾 MonoAP 𝑓 ) |
50 |
8 49
|
mpan |
⊢ ( ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 1 ) ) 𝐾 MonoAP 𝑓 → ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 𝑛 ) ) 𝐾 MonoAP 𝑓 ) |
51 |
45 50
|
syl6 |
⊢ ( 𝜑 → ( ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 1 ) ) ( 1 ( AP ‘ 𝐾 ) 1 ) ⊆ ( ◡ 𝑓 “ { ( 𝑓 ‘ 1 ) } ) → ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 𝑛 ) ) 𝐾 MonoAP 𝑓 ) ) |
52 |
28 51
|
syld |
⊢ ( 𝜑 → ( 𝐾 = 1 → ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 𝑛 ) ) 𝐾 MonoAP 𝑓 ) ) |
53 |
|
breq1 |
⊢ ( 𝑥 = 2 → ( 𝑥 MonoAP 𝑓 ↔ 2 MonoAP 𝑓 ) ) |
54 |
53
|
rexralbidv |
⊢ ( 𝑥 = 2 → ( ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑟 ↑m ( 1 ... 𝑛 ) ) 𝑥 MonoAP 𝑓 ↔ ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑟 ↑m ( 1 ... 𝑛 ) ) 2 MonoAP 𝑓 ) ) |
55 |
54
|
ralbidv |
⊢ ( 𝑥 = 2 → ( ∀ 𝑟 ∈ Fin ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑟 ↑m ( 1 ... 𝑛 ) ) 𝑥 MonoAP 𝑓 ↔ ∀ 𝑟 ∈ Fin ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑟 ↑m ( 1 ... 𝑛 ) ) 2 MonoAP 𝑓 ) ) |
56 |
|
breq1 |
⊢ ( 𝑥 = 𝑘 → ( 𝑥 MonoAP 𝑓 ↔ 𝑘 MonoAP 𝑓 ) ) |
57 |
56
|
rexralbidv |
⊢ ( 𝑥 = 𝑘 → ( ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑟 ↑m ( 1 ... 𝑛 ) ) 𝑥 MonoAP 𝑓 ↔ ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑟 ↑m ( 1 ... 𝑛 ) ) 𝑘 MonoAP 𝑓 ) ) |
58 |
57
|
ralbidv |
⊢ ( 𝑥 = 𝑘 → ( ∀ 𝑟 ∈ Fin ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑟 ↑m ( 1 ... 𝑛 ) ) 𝑥 MonoAP 𝑓 ↔ ∀ 𝑟 ∈ Fin ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑟 ↑m ( 1 ... 𝑛 ) ) 𝑘 MonoAP 𝑓 ) ) |
59 |
|
breq1 |
⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( 𝑥 MonoAP 𝑓 ↔ ( 𝑘 + 1 ) MonoAP 𝑓 ) ) |
60 |
59
|
rexralbidv |
⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑟 ↑m ( 1 ... 𝑛 ) ) 𝑥 MonoAP 𝑓 ↔ ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑟 ↑m ( 1 ... 𝑛 ) ) ( 𝑘 + 1 ) MonoAP 𝑓 ) ) |
61 |
60
|
ralbidv |
⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( ∀ 𝑟 ∈ Fin ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑟 ↑m ( 1 ... 𝑛 ) ) 𝑥 MonoAP 𝑓 ↔ ∀ 𝑟 ∈ Fin ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑟 ↑m ( 1 ... 𝑛 ) ) ( 𝑘 + 1 ) MonoAP 𝑓 ) ) |
62 |
|
breq1 |
⊢ ( 𝑥 = 𝐾 → ( 𝑥 MonoAP 𝑓 ↔ 𝐾 MonoAP 𝑓 ) ) |
63 |
62
|
rexralbidv |
⊢ ( 𝑥 = 𝐾 → ( ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑟 ↑m ( 1 ... 𝑛 ) ) 𝑥 MonoAP 𝑓 ↔ ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑟 ↑m ( 1 ... 𝑛 ) ) 𝐾 MonoAP 𝑓 ) ) |
64 |
63
|
ralbidv |
⊢ ( 𝑥 = 𝐾 → ( ∀ 𝑟 ∈ Fin ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑟 ↑m ( 1 ... 𝑛 ) ) 𝑥 MonoAP 𝑓 ↔ ∀ 𝑟 ∈ Fin ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑟 ↑m ( 1 ... 𝑛 ) ) 𝐾 MonoAP 𝑓 ) ) |
65 |
|
hashcl |
⊢ ( 𝑟 ∈ Fin → ( ♯ ‘ 𝑟 ) ∈ ℕ0 ) |
66 |
|
nn0p1nn |
⊢ ( ( ♯ ‘ 𝑟 ) ∈ ℕ0 → ( ( ♯ ‘ 𝑟 ) + 1 ) ∈ ℕ ) |
67 |
65 66
|
syl |
⊢ ( 𝑟 ∈ Fin → ( ( ♯ ‘ 𝑟 ) + 1 ) ∈ ℕ ) |
68 |
|
simpll |
⊢ ( ( ( 𝑟 ∈ Fin ∧ 𝑓 ∈ ( 𝑟 ↑m ( 1 ... ( ( ♯ ‘ 𝑟 ) + 1 ) ) ) ) ∧ ¬ 2 MonoAP 𝑓 ) → 𝑟 ∈ Fin ) |
69 |
|
simplr |
⊢ ( ( ( 𝑟 ∈ Fin ∧ 𝑓 ∈ ( 𝑟 ↑m ( 1 ... ( ( ♯ ‘ 𝑟 ) + 1 ) ) ) ) ∧ ¬ 2 MonoAP 𝑓 ) → 𝑓 ∈ ( 𝑟 ↑m ( 1 ... ( ( ♯ ‘ 𝑟 ) + 1 ) ) ) ) |
70 |
|
vex |
⊢ 𝑟 ∈ V |
71 |
|
ovex |
⊢ ( 1 ... ( ( ♯ ‘ 𝑟 ) + 1 ) ) ∈ V |
72 |
70 71
|
elmap |
⊢ ( 𝑓 ∈ ( 𝑟 ↑m ( 1 ... ( ( ♯ ‘ 𝑟 ) + 1 ) ) ) ↔ 𝑓 : ( 1 ... ( ( ♯ ‘ 𝑟 ) + 1 ) ) ⟶ 𝑟 ) |
73 |
69 72
|
sylib |
⊢ ( ( ( 𝑟 ∈ Fin ∧ 𝑓 ∈ ( 𝑟 ↑m ( 1 ... ( ( ♯ ‘ 𝑟 ) + 1 ) ) ) ) ∧ ¬ 2 MonoAP 𝑓 ) → 𝑓 : ( 1 ... ( ( ♯ ‘ 𝑟 ) + 1 ) ) ⟶ 𝑟 ) |
74 |
|
simpr |
⊢ ( ( ( 𝑟 ∈ Fin ∧ 𝑓 ∈ ( 𝑟 ↑m ( 1 ... ( ( ♯ ‘ 𝑟 ) + 1 ) ) ) ) ∧ ¬ 2 MonoAP 𝑓 ) → ¬ 2 MonoAP 𝑓 ) |
75 |
68 73 74
|
vdwlem12 |
⊢ ¬ ( ( 𝑟 ∈ Fin ∧ 𝑓 ∈ ( 𝑟 ↑m ( 1 ... ( ( ♯ ‘ 𝑟 ) + 1 ) ) ) ) ∧ ¬ 2 MonoAP 𝑓 ) |
76 |
|
iman |
⊢ ( ( ( 𝑟 ∈ Fin ∧ 𝑓 ∈ ( 𝑟 ↑m ( 1 ... ( ( ♯ ‘ 𝑟 ) + 1 ) ) ) ) → 2 MonoAP 𝑓 ) ↔ ¬ ( ( 𝑟 ∈ Fin ∧ 𝑓 ∈ ( 𝑟 ↑m ( 1 ... ( ( ♯ ‘ 𝑟 ) + 1 ) ) ) ) ∧ ¬ 2 MonoAP 𝑓 ) ) |
77 |
75 76
|
mpbir |
⊢ ( ( 𝑟 ∈ Fin ∧ 𝑓 ∈ ( 𝑟 ↑m ( 1 ... ( ( ♯ ‘ 𝑟 ) + 1 ) ) ) ) → 2 MonoAP 𝑓 ) |
78 |
77
|
ralrimiva |
⊢ ( 𝑟 ∈ Fin → ∀ 𝑓 ∈ ( 𝑟 ↑m ( 1 ... ( ( ♯ ‘ 𝑟 ) + 1 ) ) ) 2 MonoAP 𝑓 ) |
79 |
|
oveq2 |
⊢ ( 𝑛 = ( ( ♯ ‘ 𝑟 ) + 1 ) → ( 1 ... 𝑛 ) = ( 1 ... ( ( ♯ ‘ 𝑟 ) + 1 ) ) ) |
80 |
79
|
oveq2d |
⊢ ( 𝑛 = ( ( ♯ ‘ 𝑟 ) + 1 ) → ( 𝑟 ↑m ( 1 ... 𝑛 ) ) = ( 𝑟 ↑m ( 1 ... ( ( ♯ ‘ 𝑟 ) + 1 ) ) ) ) |
81 |
80
|
raleqdv |
⊢ ( 𝑛 = ( ( ♯ ‘ 𝑟 ) + 1 ) → ( ∀ 𝑓 ∈ ( 𝑟 ↑m ( 1 ... 𝑛 ) ) 2 MonoAP 𝑓 ↔ ∀ 𝑓 ∈ ( 𝑟 ↑m ( 1 ... ( ( ♯ ‘ 𝑟 ) + 1 ) ) ) 2 MonoAP 𝑓 ) ) |
82 |
81
|
rspcev |
⊢ ( ( ( ( ♯ ‘ 𝑟 ) + 1 ) ∈ ℕ ∧ ∀ 𝑓 ∈ ( 𝑟 ↑m ( 1 ... ( ( ♯ ‘ 𝑟 ) + 1 ) ) ) 2 MonoAP 𝑓 ) → ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑟 ↑m ( 1 ... 𝑛 ) ) 2 MonoAP 𝑓 ) |
83 |
67 78 82
|
syl2anc |
⊢ ( 𝑟 ∈ Fin → ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑟 ↑m ( 1 ... 𝑛 ) ) 2 MonoAP 𝑓 ) |
84 |
83
|
rgen |
⊢ ∀ 𝑟 ∈ Fin ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑟 ↑m ( 1 ... 𝑛 ) ) 2 MonoAP 𝑓 |
85 |
|
oveq1 |
⊢ ( 𝑟 = 𝑠 → ( 𝑟 ↑m ( 1 ... 𝑛 ) ) = ( 𝑠 ↑m ( 1 ... 𝑛 ) ) ) |
86 |
85
|
raleqdv |
⊢ ( 𝑟 = 𝑠 → ( ∀ 𝑓 ∈ ( 𝑟 ↑m ( 1 ... 𝑛 ) ) 𝑘 MonoAP 𝑓 ↔ ∀ 𝑓 ∈ ( 𝑠 ↑m ( 1 ... 𝑛 ) ) 𝑘 MonoAP 𝑓 ) ) |
87 |
86
|
rexbidv |
⊢ ( 𝑟 = 𝑠 → ( ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑟 ↑m ( 1 ... 𝑛 ) ) 𝑘 MonoAP 𝑓 ↔ ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑠 ↑m ( 1 ... 𝑛 ) ) 𝑘 MonoAP 𝑓 ) ) |
88 |
|
oveq2 |
⊢ ( 𝑛 = 𝑚 → ( 1 ... 𝑛 ) = ( 1 ... 𝑚 ) ) |
89 |
88
|
oveq2d |
⊢ ( 𝑛 = 𝑚 → ( 𝑠 ↑m ( 1 ... 𝑛 ) ) = ( 𝑠 ↑m ( 1 ... 𝑚 ) ) ) |
90 |
89
|
raleqdv |
⊢ ( 𝑛 = 𝑚 → ( ∀ 𝑓 ∈ ( 𝑠 ↑m ( 1 ... 𝑛 ) ) 𝑘 MonoAP 𝑓 ↔ ∀ 𝑓 ∈ ( 𝑠 ↑m ( 1 ... 𝑚 ) ) 𝑘 MonoAP 𝑓 ) ) |
91 |
|
breq2 |
⊢ ( 𝑓 = 𝑔 → ( 𝑘 MonoAP 𝑓 ↔ 𝑘 MonoAP 𝑔 ) ) |
92 |
91
|
cbvralvw |
⊢ ( ∀ 𝑓 ∈ ( 𝑠 ↑m ( 1 ... 𝑚 ) ) 𝑘 MonoAP 𝑓 ↔ ∀ 𝑔 ∈ ( 𝑠 ↑m ( 1 ... 𝑚 ) ) 𝑘 MonoAP 𝑔 ) |
93 |
90 92
|
bitrdi |
⊢ ( 𝑛 = 𝑚 → ( ∀ 𝑓 ∈ ( 𝑠 ↑m ( 1 ... 𝑛 ) ) 𝑘 MonoAP 𝑓 ↔ ∀ 𝑔 ∈ ( 𝑠 ↑m ( 1 ... 𝑚 ) ) 𝑘 MonoAP 𝑔 ) ) |
94 |
93
|
cbvrexvw |
⊢ ( ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑠 ↑m ( 1 ... 𝑛 ) ) 𝑘 MonoAP 𝑓 ↔ ∃ 𝑚 ∈ ℕ ∀ 𝑔 ∈ ( 𝑠 ↑m ( 1 ... 𝑚 ) ) 𝑘 MonoAP 𝑔 ) |
95 |
87 94
|
bitrdi |
⊢ ( 𝑟 = 𝑠 → ( ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑟 ↑m ( 1 ... 𝑛 ) ) 𝑘 MonoAP 𝑓 ↔ ∃ 𝑚 ∈ ℕ ∀ 𝑔 ∈ ( 𝑠 ↑m ( 1 ... 𝑚 ) ) 𝑘 MonoAP 𝑔 ) ) |
96 |
95
|
cbvralvw |
⊢ ( ∀ 𝑟 ∈ Fin ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑟 ↑m ( 1 ... 𝑛 ) ) 𝑘 MonoAP 𝑓 ↔ ∀ 𝑠 ∈ Fin ∃ 𝑚 ∈ ℕ ∀ 𝑔 ∈ ( 𝑠 ↑m ( 1 ... 𝑚 ) ) 𝑘 MonoAP 𝑔 ) |
97 |
|
simplr |
⊢ ( ( ( 𝑘 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑟 ∈ Fin ) ∧ ∀ 𝑠 ∈ Fin ∃ 𝑚 ∈ ℕ ∀ 𝑔 ∈ ( 𝑠 ↑m ( 1 ... 𝑚 ) ) 𝑘 MonoAP 𝑔 ) → 𝑟 ∈ Fin ) |
98 |
|
simpll |
⊢ ( ( ( 𝑘 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑟 ∈ Fin ) ∧ ∀ 𝑠 ∈ Fin ∃ 𝑚 ∈ ℕ ∀ 𝑔 ∈ ( 𝑠 ↑m ( 1 ... 𝑚 ) ) 𝑘 MonoAP 𝑔 ) → 𝑘 ∈ ( ℤ≥ ‘ 2 ) ) |
99 |
|
simpr |
⊢ ( ( ( 𝑘 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑟 ∈ Fin ) ∧ ∀ 𝑠 ∈ Fin ∃ 𝑚 ∈ ℕ ∀ 𝑔 ∈ ( 𝑠 ↑m ( 1 ... 𝑚 ) ) 𝑘 MonoAP 𝑔 ) → ∀ 𝑠 ∈ Fin ∃ 𝑚 ∈ ℕ ∀ 𝑔 ∈ ( 𝑠 ↑m ( 1 ... 𝑚 ) ) 𝑘 MonoAP 𝑔 ) |
100 |
94
|
ralbii |
⊢ ( ∀ 𝑠 ∈ Fin ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑠 ↑m ( 1 ... 𝑛 ) ) 𝑘 MonoAP 𝑓 ↔ ∀ 𝑠 ∈ Fin ∃ 𝑚 ∈ ℕ ∀ 𝑔 ∈ ( 𝑠 ↑m ( 1 ... 𝑚 ) ) 𝑘 MonoAP 𝑔 ) |
101 |
99 100
|
sylibr |
⊢ ( ( ( 𝑘 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑟 ∈ Fin ) ∧ ∀ 𝑠 ∈ Fin ∃ 𝑚 ∈ ℕ ∀ 𝑔 ∈ ( 𝑠 ↑m ( 1 ... 𝑚 ) ) 𝑘 MonoAP 𝑔 ) → ∀ 𝑠 ∈ Fin ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑠 ↑m ( 1 ... 𝑛 ) ) 𝑘 MonoAP 𝑓 ) |
102 |
97 98 101
|
vdwlem11 |
⊢ ( ( ( 𝑘 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑟 ∈ Fin ) ∧ ∀ 𝑠 ∈ Fin ∃ 𝑚 ∈ ℕ ∀ 𝑔 ∈ ( 𝑠 ↑m ( 1 ... 𝑚 ) ) 𝑘 MonoAP 𝑔 ) → ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑟 ↑m ( 1 ... 𝑛 ) ) ( 𝑘 + 1 ) MonoAP 𝑓 ) |
103 |
102
|
ex |
⊢ ( ( 𝑘 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑟 ∈ Fin ) → ( ∀ 𝑠 ∈ Fin ∃ 𝑚 ∈ ℕ ∀ 𝑔 ∈ ( 𝑠 ↑m ( 1 ... 𝑚 ) ) 𝑘 MonoAP 𝑔 → ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑟 ↑m ( 1 ... 𝑛 ) ) ( 𝑘 + 1 ) MonoAP 𝑓 ) ) |
104 |
103
|
ralrimdva |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 2 ) → ( ∀ 𝑠 ∈ Fin ∃ 𝑚 ∈ ℕ ∀ 𝑔 ∈ ( 𝑠 ↑m ( 1 ... 𝑚 ) ) 𝑘 MonoAP 𝑔 → ∀ 𝑟 ∈ Fin ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑟 ↑m ( 1 ... 𝑛 ) ) ( 𝑘 + 1 ) MonoAP 𝑓 ) ) |
105 |
96 104
|
syl5bi |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 2 ) → ( ∀ 𝑟 ∈ Fin ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑟 ↑m ( 1 ... 𝑛 ) ) 𝑘 MonoAP 𝑓 → ∀ 𝑟 ∈ Fin ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑟 ↑m ( 1 ... 𝑛 ) ) ( 𝑘 + 1 ) MonoAP 𝑓 ) ) |
106 |
55 58 61 64 84 105
|
uzind4i |
⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 2 ) → ∀ 𝑟 ∈ Fin ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑟 ↑m ( 1 ... 𝑛 ) ) 𝐾 MonoAP 𝑓 ) |
107 |
|
oveq1 |
⊢ ( 𝑟 = 𝑅 → ( 𝑟 ↑m ( 1 ... 𝑛 ) ) = ( 𝑅 ↑m ( 1 ... 𝑛 ) ) ) |
108 |
107
|
raleqdv |
⊢ ( 𝑟 = 𝑅 → ( ∀ 𝑓 ∈ ( 𝑟 ↑m ( 1 ... 𝑛 ) ) 𝐾 MonoAP 𝑓 ↔ ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 𝑛 ) ) 𝐾 MonoAP 𝑓 ) ) |
109 |
108
|
rexbidv |
⊢ ( 𝑟 = 𝑅 → ( ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑟 ↑m ( 1 ... 𝑛 ) ) 𝐾 MonoAP 𝑓 ↔ ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 𝑛 ) ) 𝐾 MonoAP 𝑓 ) ) |
110 |
109
|
rspcv |
⊢ ( 𝑅 ∈ Fin → ( ∀ 𝑟 ∈ Fin ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑟 ↑m ( 1 ... 𝑛 ) ) 𝐾 MonoAP 𝑓 → ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 𝑛 ) ) 𝐾 MonoAP 𝑓 ) ) |
111 |
1 106 110
|
syl2im |
⊢ ( 𝜑 → ( 𝐾 ∈ ( ℤ≥ ‘ 2 ) → ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 𝑛 ) ) 𝐾 MonoAP 𝑓 ) ) |
112 |
52 111
|
jaod |
⊢ ( 𝜑 → ( ( 𝐾 = 1 ∨ 𝐾 ∈ ( ℤ≥ ‘ 2 ) ) → ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 𝑛 ) ) 𝐾 MonoAP 𝑓 ) ) |
113 |
3 112
|
syl5bi |
⊢ ( 𝜑 → ( 𝐾 ∈ ℕ → ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 𝑛 ) ) 𝐾 MonoAP 𝑓 ) ) |
114 |
|
fveq2 |
⊢ ( 𝐾 = 0 → ( AP ‘ 𝐾 ) = ( AP ‘ 0 ) ) |
115 |
114
|
oveqd |
⊢ ( 𝐾 = 0 → ( 1 ( AP ‘ 𝐾 ) 1 ) = ( 1 ( AP ‘ 0 ) 1 ) ) |
116 |
|
vdwap0 |
⊢ ( ( 1 ∈ ℕ ∧ 1 ∈ ℕ ) → ( 1 ( AP ‘ 0 ) 1 ) = ∅ ) |
117 |
8 8 116
|
mp2an |
⊢ ( 1 ( AP ‘ 0 ) 1 ) = ∅ |
118 |
115 117
|
eqtrdi |
⊢ ( 𝐾 = 0 → ( 1 ( AP ‘ 𝐾 ) 1 ) = ∅ ) |
119 |
|
0ss |
⊢ ∅ ⊆ ( ◡ 𝑓 “ { ( 𝑓 ‘ 1 ) } ) |
120 |
118 119
|
eqsstrdi |
⊢ ( 𝐾 = 0 → ( 1 ( AP ‘ 𝐾 ) 1 ) ⊆ ( ◡ 𝑓 “ { ( 𝑓 ‘ 1 ) } ) ) |
121 |
120
|
ralrimivw |
⊢ ( 𝐾 = 0 → ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 1 ) ) ( 1 ( AP ‘ 𝐾 ) 1 ) ⊆ ( ◡ 𝑓 “ { ( 𝑓 ‘ 1 ) } ) ) |
122 |
121 51
|
syl5 |
⊢ ( 𝜑 → ( 𝐾 = 0 → ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 𝑛 ) ) 𝐾 MonoAP 𝑓 ) ) |
123 |
|
elnn0 |
⊢ ( 𝐾 ∈ ℕ0 ↔ ( 𝐾 ∈ ℕ ∨ 𝐾 = 0 ) ) |
124 |
2 123
|
sylib |
⊢ ( 𝜑 → ( 𝐾 ∈ ℕ ∨ 𝐾 = 0 ) ) |
125 |
113 122 124
|
mpjaod |
⊢ ( 𝜑 → ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 𝑛 ) ) 𝐾 MonoAP 𝑓 ) |