| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vdw.r | ⊢ ( 𝜑  →  𝑅  ∈  Fin ) | 
						
							| 2 |  | vdwlem9.k | ⊢ ( 𝜑  →  𝐾  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 3 |  | vdwlem9.s | ⊢ ( 𝜑  →  ∀ 𝑠  ∈  Fin ∃ 𝑛  ∈  ℕ ∀ 𝑓  ∈  ( 𝑠  ↑m  ( 1 ... 𝑛 ) ) 𝐾  MonoAP  𝑓 ) | 
						
							| 4 |  | hashcl | ⊢ ( 𝑅  ∈  Fin  →  ( ♯ ‘ 𝑅 )  ∈  ℕ0 ) | 
						
							| 5 | 1 4 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑅 )  ∈  ℕ0 ) | 
						
							| 6 |  | nn0p1nn | ⊢ ( ( ♯ ‘ 𝑅 )  ∈  ℕ0  →  ( ( ♯ ‘ 𝑅 )  +  1 )  ∈  ℕ ) | 
						
							| 7 | 5 6 | syl | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝑅 )  +  1 )  ∈  ℕ ) | 
						
							| 8 | 1 2 3 7 | vdwlem10 | ⊢ ( 𝜑  →  ∃ 𝑛  ∈  ℕ ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 1 ... 𝑛 ) ) ( 〈 ( ( ♯ ‘ 𝑅 )  +  1 ) ,  𝐾 〉  PolyAP  𝑓  ∨  ( 𝐾  +  1 )  MonoAP  𝑓 ) ) | 
						
							| 9 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝑅  ∈  Fin ) | 
						
							| 10 |  | ovex | ⊢ ( 1 ... 𝑛 )  ∈  V | 
						
							| 11 |  | elmapg | ⊢ ( ( 𝑅  ∈  Fin  ∧  ( 1 ... 𝑛 )  ∈  V )  →  ( 𝑓  ∈  ( 𝑅  ↑m  ( 1 ... 𝑛 ) )  ↔  𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) ) | 
						
							| 12 | 9 10 11 | sylancl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑓  ∈  ( 𝑅  ↑m  ( 1 ... 𝑛 ) )  ↔  𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) ) | 
						
							| 13 | 12 | biimpa | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑓  ∈  ( 𝑅  ↑m  ( 1 ... 𝑛 ) ) )  →  𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) | 
						
							| 14 | 5 | nn0red | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑅 )  ∈  ℝ ) | 
						
							| 15 | 14 | ltp1d | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑅 )  <  ( ( ♯ ‘ 𝑅 )  +  1 ) ) | 
						
							| 16 |  | peano2re | ⊢ ( ( ♯ ‘ 𝑅 )  ∈  ℝ  →  ( ( ♯ ‘ 𝑅 )  +  1 )  ∈  ℝ ) | 
						
							| 17 | 14 16 | syl | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝑅 )  +  1 )  ∈  ℝ ) | 
						
							| 18 | 14 17 | ltnled | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝑅 )  <  ( ( ♯ ‘ 𝑅 )  +  1 )  ↔  ¬  ( ( ♯ ‘ 𝑅 )  +  1 )  ≤  ( ♯ ‘ 𝑅 ) ) ) | 
						
							| 19 | 15 18 | mpbid | ⊢ ( 𝜑  →  ¬  ( ( ♯ ‘ 𝑅 )  +  1 )  ≤  ( ♯ ‘ 𝑅 ) ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) )  →  ¬  ( ( ♯ ‘ 𝑅 )  +  1 )  ≤  ( ♯ ‘ 𝑅 ) ) | 
						
							| 21 |  | eluz2nn | ⊢ ( 𝐾  ∈  ( ℤ≥ ‘ 2 )  →  𝐾  ∈  ℕ ) | 
						
							| 22 | 2 21 | syl | ⊢ ( 𝜑  →  𝐾  ∈  ℕ ) | 
						
							| 23 | 22 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) )  →  𝐾  ∈  ℕ ) | 
						
							| 24 | 23 | nnnn0d | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) )  →  𝐾  ∈  ℕ0 ) | 
						
							| 25 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) )  →  𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) | 
						
							| 26 | 7 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) )  →  ( ( ♯ ‘ 𝑅 )  +  1 )  ∈  ℕ ) | 
						
							| 27 |  | eqid | ⊢ ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  =  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) | 
						
							| 28 | 10 24 25 26 27 | vdwpc | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) )  →  ( 〈 ( ( ♯ ‘ 𝑅 )  +  1 ) ,  𝐾 〉  PolyAP  𝑓  ↔  ∃ 𝑎  ∈  ℕ ∃ 𝑑  ∈  ( ℕ  ↑m  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ) ( ∀ 𝑖  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ( ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( ◡ 𝑓  “  { ( 𝑓 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) } )  ∧  ( ♯ ‘ ran  ( 𝑖  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ↦  ( 𝑓 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) ) )  =  ( ( ♯ ‘ 𝑅 )  +  1 ) ) ) ) | 
						
							| 29 | 1 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) )  ∧  ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ( ℕ  ↑m  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ) ) )  ∧  ∀ 𝑖  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ( ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( ◡ 𝑓  “  { ( 𝑓 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) } ) )  →  𝑅  ∈  Fin ) | 
						
							| 30 | 25 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) )  ∧  ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ( ℕ  ↑m  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ) ) )  ∧  𝑖  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) )  →  𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) | 
						
							| 31 | 25 | ad3antrrr | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) )  ∧  ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ( ℕ  ↑m  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ) ) )  ∧  𝑖  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) )  ∧  ( ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( ◡ 𝑓  “  { ( 𝑓 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) } ) )  →  𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) | 
						
							| 32 |  | simpr | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) )  ∧  ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ( ℕ  ↑m  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ) ) )  ∧  𝑖  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) )  ∧  ( ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( ◡ 𝑓  “  { ( 𝑓 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) } ) )  →  ( ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( ◡ 𝑓  “  { ( 𝑓 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) } ) ) | 
						
							| 33 |  | cnvimass | ⊢ ( ◡ 𝑓  “  { ( 𝑓 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) } )  ⊆  dom  𝑓 | 
						
							| 34 | 32 33 | sstrdi | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) )  ∧  ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ( ℕ  ↑m  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ) ) )  ∧  𝑖  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) )  ∧  ( ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( ◡ 𝑓  “  { ( 𝑓 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) } ) )  →  ( ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) )  ⊆  dom  𝑓 ) | 
						
							| 35 | 31 34 | fssdmd | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) )  ∧  ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ( ℕ  ↑m  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ) ) )  ∧  𝑖  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) )  ∧  ( ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( ◡ 𝑓  “  { ( 𝑓 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) } ) )  →  ( ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( 1 ... 𝑛 ) ) | 
						
							| 36 | 22 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) )  ∧  ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ( ℕ  ↑m  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ) ) )  ∧  𝑖  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) )  →  𝐾  ∈  ℕ ) | 
						
							| 37 |  | simplrl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) )  ∧  ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ( ℕ  ↑m  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ) ) )  ∧  𝑖  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) )  →  𝑎  ∈  ℕ ) | 
						
							| 38 |  | simprr | ⊢ ( ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) )  ∧  ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ( ℕ  ↑m  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ) ) )  →  𝑑  ∈  ( ℕ  ↑m  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ) ) | 
						
							| 39 |  | nnex | ⊢ ℕ  ∈  V | 
						
							| 40 |  | ovex | ⊢ ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ∈  V | 
						
							| 41 | 39 40 | elmap | ⊢ ( 𝑑  ∈  ( ℕ  ↑m  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) )  ↔  𝑑 : ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ⟶ ℕ ) | 
						
							| 42 | 38 41 | sylib | ⊢ ( ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) )  ∧  ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ( ℕ  ↑m  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ) ) )  →  𝑑 : ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ⟶ ℕ ) | 
						
							| 43 | 42 | ffvelcdmda | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) )  ∧  ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ( ℕ  ↑m  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ) ) )  ∧  𝑖  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) )  →  ( 𝑑 ‘ 𝑖 )  ∈  ℕ ) | 
						
							| 44 | 37 43 | nnaddcld | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) )  ∧  ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ( ℕ  ↑m  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ) ) )  ∧  𝑖  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) )  →  ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) )  ∈  ℕ ) | 
						
							| 45 |  | vdwapid1 | ⊢ ( ( 𝐾  ∈  ℕ  ∧  ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) )  ∈  ℕ  ∧  ( 𝑑 ‘ 𝑖 )  ∈  ℕ )  →  ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) )  ∈  ( ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ) | 
						
							| 46 | 36 44 43 45 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) )  ∧  ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ( ℕ  ↑m  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ) ) )  ∧  𝑖  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) )  →  ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) )  ∈  ( ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ) | 
						
							| 47 | 46 | adantr | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) )  ∧  ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ( ℕ  ↑m  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ) ) )  ∧  𝑖  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) )  ∧  ( ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( ◡ 𝑓  “  { ( 𝑓 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) } ) )  →  ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) )  ∈  ( ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ) | 
						
							| 48 | 35 47 | sseldd | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) )  ∧  ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ( ℕ  ↑m  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ) ) )  ∧  𝑖  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) )  ∧  ( ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( ◡ 𝑓  “  { ( 𝑓 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) } ) )  →  ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) )  ∈  ( 1 ... 𝑛 ) ) | 
						
							| 49 | 48 | ex | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) )  ∧  ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ( ℕ  ↑m  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ) ) )  ∧  𝑖  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) )  →  ( ( ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( ◡ 𝑓  “  { ( 𝑓 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) } )  →  ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) )  ∈  ( 1 ... 𝑛 ) ) ) | 
						
							| 50 |  | ffvelcdm | ⊢ ( ( 𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅  ∧  ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) )  ∈  ( 1 ... 𝑛 ) )  →  ( 𝑓 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) )  ∈  𝑅 ) | 
						
							| 51 | 30 49 50 | syl6an | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) )  ∧  ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ( ℕ  ↑m  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ) ) )  ∧  𝑖  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) )  →  ( ( ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( ◡ 𝑓  “  { ( 𝑓 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) } )  →  ( 𝑓 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) )  ∈  𝑅 ) ) | 
						
							| 52 | 51 | ralimdva | ⊢ ( ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) )  ∧  ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ( ℕ  ↑m  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ) ) )  →  ( ∀ 𝑖  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ( ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( ◡ 𝑓  “  { ( 𝑓 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) } )  →  ∀ 𝑖  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ( 𝑓 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) )  ∈  𝑅 ) ) | 
						
							| 53 | 52 | imp | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) )  ∧  ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ( ℕ  ↑m  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ) ) )  ∧  ∀ 𝑖  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ( ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( ◡ 𝑓  “  { ( 𝑓 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) } ) )  →  ∀ 𝑖  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ( 𝑓 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) )  ∈  𝑅 ) | 
						
							| 54 |  | eqid | ⊢ ( 𝑖  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ↦  ( 𝑓 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) )  =  ( 𝑖  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ↦  ( 𝑓 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) ) | 
						
							| 55 | 54 | fmpt | ⊢ ( ∀ 𝑖  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ( 𝑓 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) )  ∈  𝑅  ↔  ( 𝑖  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ↦  ( 𝑓 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) ) : ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ⟶ 𝑅 ) | 
						
							| 56 | 53 55 | sylib | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) )  ∧  ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ( ℕ  ↑m  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ) ) )  ∧  ∀ 𝑖  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ( ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( ◡ 𝑓  “  { ( 𝑓 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) } ) )  →  ( 𝑖  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ↦  ( 𝑓 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) ) : ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ⟶ 𝑅 ) | 
						
							| 57 | 56 | frnd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) )  ∧  ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ( ℕ  ↑m  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ) ) )  ∧  ∀ 𝑖  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ( ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( ◡ 𝑓  “  { ( 𝑓 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) } ) )  →  ran  ( 𝑖  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ↦  ( 𝑓 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) )  ⊆  𝑅 ) | 
						
							| 58 |  | ssdomg | ⊢ ( 𝑅  ∈  Fin  →  ( ran  ( 𝑖  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ↦  ( 𝑓 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) )  ⊆  𝑅  →  ran  ( 𝑖  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ↦  ( 𝑓 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) )  ≼  𝑅 ) ) | 
						
							| 59 | 29 57 58 | sylc | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) )  ∧  ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ( ℕ  ↑m  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ) ) )  ∧  ∀ 𝑖  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ( ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( ◡ 𝑓  “  { ( 𝑓 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) } ) )  →  ran  ( 𝑖  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ↦  ( 𝑓 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) )  ≼  𝑅 ) | 
						
							| 60 | 29 57 | ssfid | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) )  ∧  ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ( ℕ  ↑m  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ) ) )  ∧  ∀ 𝑖  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ( ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( ◡ 𝑓  “  { ( 𝑓 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) } ) )  →  ran  ( 𝑖  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ↦  ( 𝑓 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) )  ∈  Fin ) | 
						
							| 61 |  | hashdom | ⊢ ( ( ran  ( 𝑖  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ↦  ( 𝑓 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) )  ∈  Fin  ∧  𝑅  ∈  Fin )  →  ( ( ♯ ‘ ran  ( 𝑖  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ↦  ( 𝑓 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) ) )  ≤  ( ♯ ‘ 𝑅 )  ↔  ran  ( 𝑖  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ↦  ( 𝑓 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) )  ≼  𝑅 ) ) | 
						
							| 62 | 60 29 61 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) )  ∧  ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ( ℕ  ↑m  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ) ) )  ∧  ∀ 𝑖  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ( ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( ◡ 𝑓  “  { ( 𝑓 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) } ) )  →  ( ( ♯ ‘ ran  ( 𝑖  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ↦  ( 𝑓 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) ) )  ≤  ( ♯ ‘ 𝑅 )  ↔  ran  ( 𝑖  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ↦  ( 𝑓 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) )  ≼  𝑅 ) ) | 
						
							| 63 | 59 62 | mpbird | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) )  ∧  ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ( ℕ  ↑m  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ) ) )  ∧  ∀ 𝑖  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ( ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( ◡ 𝑓  “  { ( 𝑓 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) } ) )  →  ( ♯ ‘ ran  ( 𝑖  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ↦  ( 𝑓 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) ) )  ≤  ( ♯ ‘ 𝑅 ) ) | 
						
							| 64 |  | breq1 | ⊢ ( ( ♯ ‘ ran  ( 𝑖  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ↦  ( 𝑓 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) ) )  =  ( ( ♯ ‘ 𝑅 )  +  1 )  →  ( ( ♯ ‘ ran  ( 𝑖  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ↦  ( 𝑓 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) ) )  ≤  ( ♯ ‘ 𝑅 )  ↔  ( ( ♯ ‘ 𝑅 )  +  1 )  ≤  ( ♯ ‘ 𝑅 ) ) ) | 
						
							| 65 | 63 64 | syl5ibcom | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) )  ∧  ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ( ℕ  ↑m  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ) ) )  ∧  ∀ 𝑖  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ( ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( ◡ 𝑓  “  { ( 𝑓 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) } ) )  →  ( ( ♯ ‘ ran  ( 𝑖  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ↦  ( 𝑓 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) ) )  =  ( ( ♯ ‘ 𝑅 )  +  1 )  →  ( ( ♯ ‘ 𝑅 )  +  1 )  ≤  ( ♯ ‘ 𝑅 ) ) ) | 
						
							| 66 | 65 | expimpd | ⊢ ( ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) )  ∧  ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ( ℕ  ↑m  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ) ) )  →  ( ( ∀ 𝑖  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ( ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( ◡ 𝑓  “  { ( 𝑓 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) } )  ∧  ( ♯ ‘ ran  ( 𝑖  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ↦  ( 𝑓 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) ) )  =  ( ( ♯ ‘ 𝑅 )  +  1 ) )  →  ( ( ♯ ‘ 𝑅 )  +  1 )  ≤  ( ♯ ‘ 𝑅 ) ) ) | 
						
							| 67 | 66 | rexlimdvva | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) )  →  ( ∃ 𝑎  ∈  ℕ ∃ 𝑑  ∈  ( ℕ  ↑m  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ) ( ∀ 𝑖  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ( ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( ◡ 𝑓  “  { ( 𝑓 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) } )  ∧  ( ♯ ‘ ran  ( 𝑖  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ↦  ( 𝑓 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) ) )  =  ( ( ♯ ‘ 𝑅 )  +  1 ) )  →  ( ( ♯ ‘ 𝑅 )  +  1 )  ≤  ( ♯ ‘ 𝑅 ) ) ) | 
						
							| 68 | 28 67 | sylbid | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) )  →  ( 〈 ( ( ♯ ‘ 𝑅 )  +  1 ) ,  𝐾 〉  PolyAP  𝑓  →  ( ( ♯ ‘ 𝑅 )  +  1 )  ≤  ( ♯ ‘ 𝑅 ) ) ) | 
						
							| 69 | 20 68 | mtod | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) )  →  ¬  〈 ( ( ♯ ‘ 𝑅 )  +  1 ) ,  𝐾 〉  PolyAP  𝑓 ) | 
						
							| 70 |  | biorf | ⊢ ( ¬  〈 ( ( ♯ ‘ 𝑅 )  +  1 ) ,  𝐾 〉  PolyAP  𝑓  →  ( ( 𝐾  +  1 )  MonoAP  𝑓  ↔  ( 〈 ( ( ♯ ‘ 𝑅 )  +  1 ) ,  𝐾 〉  PolyAP  𝑓  ∨  ( 𝐾  +  1 )  MonoAP  𝑓 ) ) ) | 
						
							| 71 | 69 70 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) )  →  ( ( 𝐾  +  1 )  MonoAP  𝑓  ↔  ( 〈 ( ( ♯ ‘ 𝑅 )  +  1 ) ,  𝐾 〉  PolyAP  𝑓  ∨  ( 𝐾  +  1 )  MonoAP  𝑓 ) ) ) | 
						
							| 72 | 71 | anassrs | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 )  →  ( ( 𝐾  +  1 )  MonoAP  𝑓  ↔  ( 〈 ( ( ♯ ‘ 𝑅 )  +  1 ) ,  𝐾 〉  PolyAP  𝑓  ∨  ( 𝐾  +  1 )  MonoAP  𝑓 ) ) ) | 
						
							| 73 | 13 72 | syldan | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑓  ∈  ( 𝑅  ↑m  ( 1 ... 𝑛 ) ) )  →  ( ( 𝐾  +  1 )  MonoAP  𝑓  ↔  ( 〈 ( ( ♯ ‘ 𝑅 )  +  1 ) ,  𝐾 〉  PolyAP  𝑓  ∨  ( 𝐾  +  1 )  MonoAP  𝑓 ) ) ) | 
						
							| 74 | 73 | ralbidva | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 1 ... 𝑛 ) ) ( 𝐾  +  1 )  MonoAP  𝑓  ↔  ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 1 ... 𝑛 ) ) ( 〈 ( ( ♯ ‘ 𝑅 )  +  1 ) ,  𝐾 〉  PolyAP  𝑓  ∨  ( 𝐾  +  1 )  MonoAP  𝑓 ) ) ) | 
						
							| 75 | 74 | rexbidva | ⊢ ( 𝜑  →  ( ∃ 𝑛  ∈  ℕ ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 1 ... 𝑛 ) ) ( 𝐾  +  1 )  MonoAP  𝑓  ↔  ∃ 𝑛  ∈  ℕ ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 1 ... 𝑛 ) ) ( 〈 ( ( ♯ ‘ 𝑅 )  +  1 ) ,  𝐾 〉  PolyAP  𝑓  ∨  ( 𝐾  +  1 )  MonoAP  𝑓 ) ) ) | 
						
							| 76 | 8 75 | mpbird | ⊢ ( 𝜑  →  ∃ 𝑛  ∈  ℕ ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 1 ... 𝑛 ) ) ( 𝐾  +  1 )  MonoAP  𝑓 ) |