Step |
Hyp |
Ref |
Expression |
1 |
|
vdw.r |
⊢ ( 𝜑 → 𝑅 ∈ Fin ) |
2 |
|
vdwlem9.k |
⊢ ( 𝜑 → 𝐾 ∈ ( ℤ≥ ‘ 2 ) ) |
3 |
|
vdwlem9.s |
⊢ ( 𝜑 → ∀ 𝑠 ∈ Fin ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑠 ↑m ( 1 ... 𝑛 ) ) 𝐾 MonoAP 𝑓 ) |
4 |
|
hashcl |
⊢ ( 𝑅 ∈ Fin → ( ♯ ‘ 𝑅 ) ∈ ℕ0 ) |
5 |
1 4
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝑅 ) ∈ ℕ0 ) |
6 |
|
nn0p1nn |
⊢ ( ( ♯ ‘ 𝑅 ) ∈ ℕ0 → ( ( ♯ ‘ 𝑅 ) + 1 ) ∈ ℕ ) |
7 |
5 6
|
syl |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑅 ) + 1 ) ∈ ℕ ) |
8 |
1 2 3 7
|
vdwlem10 |
⊢ ( 𝜑 → ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 𝑛 ) ) ( 〈 ( ( ♯ ‘ 𝑅 ) + 1 ) , 𝐾 〉 PolyAP 𝑓 ∨ ( 𝐾 + 1 ) MonoAP 𝑓 ) ) |
9 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑅 ∈ Fin ) |
10 |
|
ovex |
⊢ ( 1 ... 𝑛 ) ∈ V |
11 |
|
elmapg |
⊢ ( ( 𝑅 ∈ Fin ∧ ( 1 ... 𝑛 ) ∈ V ) → ( 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 𝑛 ) ) ↔ 𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) ) |
12 |
9 10 11
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 𝑛 ) ) ↔ 𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) ) |
13 |
12
|
biimpa |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 𝑛 ) ) ) → 𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) |
14 |
5
|
nn0red |
⊢ ( 𝜑 → ( ♯ ‘ 𝑅 ) ∈ ℝ ) |
15 |
14
|
ltp1d |
⊢ ( 𝜑 → ( ♯ ‘ 𝑅 ) < ( ( ♯ ‘ 𝑅 ) + 1 ) ) |
16 |
|
peano2re |
⊢ ( ( ♯ ‘ 𝑅 ) ∈ ℝ → ( ( ♯ ‘ 𝑅 ) + 1 ) ∈ ℝ ) |
17 |
14 16
|
syl |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑅 ) + 1 ) ∈ ℝ ) |
18 |
14 17
|
ltnled |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑅 ) < ( ( ♯ ‘ 𝑅 ) + 1 ) ↔ ¬ ( ( ♯ ‘ 𝑅 ) + 1 ) ≤ ( ♯ ‘ 𝑅 ) ) ) |
19 |
15 18
|
mpbid |
⊢ ( 𝜑 → ¬ ( ( ♯ ‘ 𝑅 ) + 1 ) ≤ ( ♯ ‘ 𝑅 ) ) |
20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) ) → ¬ ( ( ♯ ‘ 𝑅 ) + 1 ) ≤ ( ♯ ‘ 𝑅 ) ) |
21 |
|
eluz2nn |
⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 2 ) → 𝐾 ∈ ℕ ) |
22 |
2 21
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ ℕ ) |
23 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) ) → 𝐾 ∈ ℕ ) |
24 |
23
|
nnnn0d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) ) → 𝐾 ∈ ℕ0 ) |
25 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) ) → 𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) |
26 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) ) → ( ( ♯ ‘ 𝑅 ) + 1 ) ∈ ℕ ) |
27 |
|
eqid |
⊢ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) = ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) |
28 |
10 24 25 26 27
|
vdwpc |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) ) → ( 〈 ( ( ♯ ‘ 𝑅 ) + 1 ) , 𝐾 〉 PolyAP 𝑓 ↔ ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ( ℕ ↑m ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ( ∀ 𝑖 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝑓 “ { ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ∧ ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ↦ ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) ) = ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) |
29 |
1
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) ) ∧ ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ( ℕ ↑m ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝑓 “ { ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ) → 𝑅 ∈ Fin ) |
30 |
25
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) ) ∧ ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ( ℕ ↑m ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ) ∧ 𝑖 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) → 𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) |
31 |
25
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) ) ∧ ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ( ℕ ↑m ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ) ∧ 𝑖 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ∧ ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝑓 “ { ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ) → 𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) |
32 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) ) ∧ ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ( ℕ ↑m ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ) ∧ 𝑖 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ∧ ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝑓 “ { ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ) → ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝑓 “ { ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ) |
33 |
|
cnvimass |
⊢ ( ◡ 𝑓 “ { ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ⊆ dom 𝑓 |
34 |
32 33
|
sstrdi |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) ) ∧ ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ( ℕ ↑m ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ) ∧ 𝑖 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ∧ ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝑓 “ { ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ) → ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ dom 𝑓 ) |
35 |
31 34
|
fssdmd |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) ) ∧ ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ( ℕ ↑m ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ) ∧ 𝑖 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ∧ ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝑓 “ { ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ) → ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( 1 ... 𝑛 ) ) |
36 |
22
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) ) ∧ ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ( ℕ ↑m ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ) ∧ 𝑖 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) → 𝐾 ∈ ℕ ) |
37 |
|
simplrl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) ) ∧ ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ( ℕ ↑m ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ) ∧ 𝑖 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) → 𝑎 ∈ ℕ ) |
38 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) ) ∧ ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ( ℕ ↑m ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ) → 𝑑 ∈ ( ℕ ↑m ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) |
39 |
|
nnex |
⊢ ℕ ∈ V |
40 |
|
ovex |
⊢ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∈ V |
41 |
39 40
|
elmap |
⊢ ( 𝑑 ∈ ( ℕ ↑m ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ↔ 𝑑 : ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ⟶ ℕ ) |
42 |
38 41
|
sylib |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) ) ∧ ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ( ℕ ↑m ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ) → 𝑑 : ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ⟶ ℕ ) |
43 |
42
|
ffvelrnda |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) ) ∧ ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ( ℕ ↑m ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ) ∧ 𝑖 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) → ( 𝑑 ‘ 𝑖 ) ∈ ℕ ) |
44 |
37 43
|
nnaddcld |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) ) ∧ ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ( ℕ ↑m ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ) ∧ 𝑖 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) → ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ∈ ℕ ) |
45 |
|
vdwapid1 |
⊢ ( ( 𝐾 ∈ ℕ ∧ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ∈ ℕ ∧ ( 𝑑 ‘ 𝑖 ) ∈ ℕ ) → ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ∈ ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ) |
46 |
36 44 43 45
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) ) ∧ ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ( ℕ ↑m ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ) ∧ 𝑖 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) → ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ∈ ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ) |
47 |
46
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) ) ∧ ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ( ℕ ↑m ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ) ∧ 𝑖 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ∧ ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝑓 “ { ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ) → ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ∈ ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ) |
48 |
35 47
|
sseldd |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) ) ∧ ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ( ℕ ↑m ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ) ∧ 𝑖 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ∧ ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝑓 “ { ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ) → ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ∈ ( 1 ... 𝑛 ) ) |
49 |
48
|
ex |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) ) ∧ ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ( ℕ ↑m ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ) ∧ 𝑖 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) → ( ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝑓 “ { ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) → ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ∈ ( 1 ... 𝑛 ) ) ) |
50 |
|
ffvelrn |
⊢ ( ( 𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ∧ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ∈ ( 1 ... 𝑛 ) ) → ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ∈ 𝑅 ) |
51 |
30 49 50
|
syl6an |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) ) ∧ ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ( ℕ ↑m ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ) ∧ 𝑖 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) → ( ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝑓 “ { ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) → ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ∈ 𝑅 ) ) |
52 |
51
|
ralimdva |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) ) ∧ ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ( ℕ ↑m ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ) → ( ∀ 𝑖 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝑓 “ { ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) → ∀ 𝑖 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ∈ 𝑅 ) ) |
53 |
52
|
imp |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) ) ∧ ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ( ℕ ↑m ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝑓 “ { ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ) → ∀ 𝑖 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ∈ 𝑅 ) |
54 |
|
eqid |
⊢ ( 𝑖 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ↦ ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) = ( 𝑖 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ↦ ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) |
55 |
54
|
fmpt |
⊢ ( ∀ 𝑖 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ∈ 𝑅 ↔ ( 𝑖 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ↦ ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) : ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ⟶ 𝑅 ) |
56 |
53 55
|
sylib |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) ) ∧ ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ( ℕ ↑m ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝑓 “ { ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ) → ( 𝑖 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ↦ ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) : ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ⟶ 𝑅 ) |
57 |
56
|
frnd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) ) ∧ ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ( ℕ ↑m ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝑓 “ { ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ) → ran ( 𝑖 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ↦ ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) ⊆ 𝑅 ) |
58 |
|
ssdomg |
⊢ ( 𝑅 ∈ Fin → ( ran ( 𝑖 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ↦ ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) ⊆ 𝑅 → ran ( 𝑖 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ↦ ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) ≼ 𝑅 ) ) |
59 |
29 57 58
|
sylc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) ) ∧ ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ( ℕ ↑m ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝑓 “ { ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ) → ran ( 𝑖 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ↦ ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) ≼ 𝑅 ) |
60 |
29 57
|
ssfid |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) ) ∧ ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ( ℕ ↑m ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝑓 “ { ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ) → ran ( 𝑖 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ↦ ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) ∈ Fin ) |
61 |
|
hashdom |
⊢ ( ( ran ( 𝑖 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ↦ ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) ∈ Fin ∧ 𝑅 ∈ Fin ) → ( ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ↦ ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) ) ≤ ( ♯ ‘ 𝑅 ) ↔ ran ( 𝑖 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ↦ ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) ≼ 𝑅 ) ) |
62 |
60 29 61
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) ) ∧ ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ( ℕ ↑m ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝑓 “ { ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ) → ( ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ↦ ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) ) ≤ ( ♯ ‘ 𝑅 ) ↔ ran ( 𝑖 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ↦ ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) ≼ 𝑅 ) ) |
63 |
59 62
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) ) ∧ ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ( ℕ ↑m ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝑓 “ { ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ) → ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ↦ ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) ) ≤ ( ♯ ‘ 𝑅 ) ) |
64 |
|
breq1 |
⊢ ( ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ↦ ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) ) = ( ( ♯ ‘ 𝑅 ) + 1 ) → ( ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ↦ ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) ) ≤ ( ♯ ‘ 𝑅 ) ↔ ( ( ♯ ‘ 𝑅 ) + 1 ) ≤ ( ♯ ‘ 𝑅 ) ) ) |
65 |
63 64
|
syl5ibcom |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) ) ∧ ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ( ℕ ↑m ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝑓 “ { ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ) → ( ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ↦ ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) ) = ( ( ♯ ‘ 𝑅 ) + 1 ) → ( ( ♯ ‘ 𝑅 ) + 1 ) ≤ ( ♯ ‘ 𝑅 ) ) ) |
66 |
65
|
expimpd |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) ) ∧ ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ( ℕ ↑m ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ) → ( ( ∀ 𝑖 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝑓 “ { ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ∧ ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ↦ ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) ) = ( ( ♯ ‘ 𝑅 ) + 1 ) ) → ( ( ♯ ‘ 𝑅 ) + 1 ) ≤ ( ♯ ‘ 𝑅 ) ) ) |
67 |
66
|
rexlimdvva |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) ) → ( ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ( ℕ ↑m ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ( ∀ 𝑖 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝑓 “ { ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ∧ ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ↦ ( 𝑓 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) ) = ( ( ♯ ‘ 𝑅 ) + 1 ) ) → ( ( ♯ ‘ 𝑅 ) + 1 ) ≤ ( ♯ ‘ 𝑅 ) ) ) |
68 |
28 67
|
sylbid |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) ) → ( 〈 ( ( ♯ ‘ 𝑅 ) + 1 ) , 𝐾 〉 PolyAP 𝑓 → ( ( ♯ ‘ 𝑅 ) + 1 ) ≤ ( ♯ ‘ 𝑅 ) ) ) |
69 |
20 68
|
mtod |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) ) → ¬ 〈 ( ( ♯ ‘ 𝑅 ) + 1 ) , 𝐾 〉 PolyAP 𝑓 ) |
70 |
|
biorf |
⊢ ( ¬ 〈 ( ( ♯ ‘ 𝑅 ) + 1 ) , 𝐾 〉 PolyAP 𝑓 → ( ( 𝐾 + 1 ) MonoAP 𝑓 ↔ ( 〈 ( ( ♯ ‘ 𝑅 ) + 1 ) , 𝐾 〉 PolyAP 𝑓 ∨ ( 𝐾 + 1 ) MonoAP 𝑓 ) ) ) |
71 |
69 70
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) ) → ( ( 𝐾 + 1 ) MonoAP 𝑓 ↔ ( 〈 ( ( ♯ ‘ 𝑅 ) + 1 ) , 𝐾 〉 PolyAP 𝑓 ∨ ( 𝐾 + 1 ) MonoAP 𝑓 ) ) ) |
72 |
71
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑓 : ( 1 ... 𝑛 ) ⟶ 𝑅 ) → ( ( 𝐾 + 1 ) MonoAP 𝑓 ↔ ( 〈 ( ( ♯ ‘ 𝑅 ) + 1 ) , 𝐾 〉 PolyAP 𝑓 ∨ ( 𝐾 + 1 ) MonoAP 𝑓 ) ) ) |
73 |
13 72
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 𝑛 ) ) ) → ( ( 𝐾 + 1 ) MonoAP 𝑓 ↔ ( 〈 ( ( ♯ ‘ 𝑅 ) + 1 ) , 𝐾 〉 PolyAP 𝑓 ∨ ( 𝐾 + 1 ) MonoAP 𝑓 ) ) ) |
74 |
73
|
ralbidva |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 𝑛 ) ) ( 𝐾 + 1 ) MonoAP 𝑓 ↔ ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 𝑛 ) ) ( 〈 ( ( ♯ ‘ 𝑅 ) + 1 ) , 𝐾 〉 PolyAP 𝑓 ∨ ( 𝐾 + 1 ) MonoAP 𝑓 ) ) ) |
75 |
74
|
rexbidva |
⊢ ( 𝜑 → ( ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 𝑛 ) ) ( 𝐾 + 1 ) MonoAP 𝑓 ↔ ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 𝑛 ) ) ( 〈 ( ( ♯ ‘ 𝑅 ) + 1 ) , 𝐾 〉 PolyAP 𝑓 ∨ ( 𝐾 + 1 ) MonoAP 𝑓 ) ) ) |
76 |
8 75
|
mpbird |
⊢ ( 𝜑 → ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 𝑛 ) ) ( 𝐾 + 1 ) MonoAP 𝑓 ) |