| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vdw.r | ⊢ ( 𝜑  →  𝑅  ∈  Fin ) | 
						
							| 2 |  | vdwlem9.k | ⊢ ( 𝜑  →  𝐾  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 3 |  | vdwlem9.s | ⊢ ( 𝜑  →  ∀ 𝑠  ∈  Fin ∃ 𝑛  ∈  ℕ ∀ 𝑓  ∈  ( 𝑠  ↑m  ( 1 ... 𝑛 ) ) 𝐾  MonoAP  𝑓 ) | 
						
							| 4 |  | vdwlem10.m | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 5 |  | opeq1 | ⊢ ( 𝑥  =  1  →  〈 𝑥 ,  𝐾 〉  =  〈 1 ,  𝐾 〉 ) | 
						
							| 6 | 5 | breq1d | ⊢ ( 𝑥  =  1  →  ( 〈 𝑥 ,  𝐾 〉  PolyAP  𝑓  ↔  〈 1 ,  𝐾 〉  PolyAP  𝑓 ) ) | 
						
							| 7 | 6 | orbi1d | ⊢ ( 𝑥  =  1  →  ( ( 〈 𝑥 ,  𝐾 〉  PolyAP  𝑓  ∨  ( 𝐾  +  1 )  MonoAP  𝑓 )  ↔  ( 〈 1 ,  𝐾 〉  PolyAP  𝑓  ∨  ( 𝐾  +  1 )  MonoAP  𝑓 ) ) ) | 
						
							| 8 | 7 | rexralbidv | ⊢ ( 𝑥  =  1  →  ( ∃ 𝑛  ∈  ℕ ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 1 ... 𝑛 ) ) ( 〈 𝑥 ,  𝐾 〉  PolyAP  𝑓  ∨  ( 𝐾  +  1 )  MonoAP  𝑓 )  ↔  ∃ 𝑛  ∈  ℕ ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 1 ... 𝑛 ) ) ( 〈 1 ,  𝐾 〉  PolyAP  𝑓  ∨  ( 𝐾  +  1 )  MonoAP  𝑓 ) ) ) | 
						
							| 9 | 8 | imbi2d | ⊢ ( 𝑥  =  1  →  ( ( 𝜑  →  ∃ 𝑛  ∈  ℕ ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 1 ... 𝑛 ) ) ( 〈 𝑥 ,  𝐾 〉  PolyAP  𝑓  ∨  ( 𝐾  +  1 )  MonoAP  𝑓 ) )  ↔  ( 𝜑  →  ∃ 𝑛  ∈  ℕ ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 1 ... 𝑛 ) ) ( 〈 1 ,  𝐾 〉  PolyAP  𝑓  ∨  ( 𝐾  +  1 )  MonoAP  𝑓 ) ) ) ) | 
						
							| 10 |  | opeq1 | ⊢ ( 𝑥  =  𝑚  →  〈 𝑥 ,  𝐾 〉  =  〈 𝑚 ,  𝐾 〉 ) | 
						
							| 11 | 10 | breq1d | ⊢ ( 𝑥  =  𝑚  →  ( 〈 𝑥 ,  𝐾 〉  PolyAP  𝑓  ↔  〈 𝑚 ,  𝐾 〉  PolyAP  𝑓 ) ) | 
						
							| 12 | 11 | orbi1d | ⊢ ( 𝑥  =  𝑚  →  ( ( 〈 𝑥 ,  𝐾 〉  PolyAP  𝑓  ∨  ( 𝐾  +  1 )  MonoAP  𝑓 )  ↔  ( 〈 𝑚 ,  𝐾 〉  PolyAP  𝑓  ∨  ( 𝐾  +  1 )  MonoAP  𝑓 ) ) ) | 
						
							| 13 | 12 | rexralbidv | ⊢ ( 𝑥  =  𝑚  →  ( ∃ 𝑛  ∈  ℕ ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 1 ... 𝑛 ) ) ( 〈 𝑥 ,  𝐾 〉  PolyAP  𝑓  ∨  ( 𝐾  +  1 )  MonoAP  𝑓 )  ↔  ∃ 𝑛  ∈  ℕ ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 1 ... 𝑛 ) ) ( 〈 𝑚 ,  𝐾 〉  PolyAP  𝑓  ∨  ( 𝐾  +  1 )  MonoAP  𝑓 ) ) ) | 
						
							| 14 | 13 | imbi2d | ⊢ ( 𝑥  =  𝑚  →  ( ( 𝜑  →  ∃ 𝑛  ∈  ℕ ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 1 ... 𝑛 ) ) ( 〈 𝑥 ,  𝐾 〉  PolyAP  𝑓  ∨  ( 𝐾  +  1 )  MonoAP  𝑓 ) )  ↔  ( 𝜑  →  ∃ 𝑛  ∈  ℕ ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 1 ... 𝑛 ) ) ( 〈 𝑚 ,  𝐾 〉  PolyAP  𝑓  ∨  ( 𝐾  +  1 )  MonoAP  𝑓 ) ) ) ) | 
						
							| 15 |  | opeq1 | ⊢ ( 𝑥  =  ( 𝑚  +  1 )  →  〈 𝑥 ,  𝐾 〉  =  〈 ( 𝑚  +  1 ) ,  𝐾 〉 ) | 
						
							| 16 | 15 | breq1d | ⊢ ( 𝑥  =  ( 𝑚  +  1 )  →  ( 〈 𝑥 ,  𝐾 〉  PolyAP  𝑓  ↔  〈 ( 𝑚  +  1 ) ,  𝐾 〉  PolyAP  𝑓 ) ) | 
						
							| 17 | 16 | orbi1d | ⊢ ( 𝑥  =  ( 𝑚  +  1 )  →  ( ( 〈 𝑥 ,  𝐾 〉  PolyAP  𝑓  ∨  ( 𝐾  +  1 )  MonoAP  𝑓 )  ↔  ( 〈 ( 𝑚  +  1 ) ,  𝐾 〉  PolyAP  𝑓  ∨  ( 𝐾  +  1 )  MonoAP  𝑓 ) ) ) | 
						
							| 18 | 17 | rexralbidv | ⊢ ( 𝑥  =  ( 𝑚  +  1 )  →  ( ∃ 𝑛  ∈  ℕ ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 1 ... 𝑛 ) ) ( 〈 𝑥 ,  𝐾 〉  PolyAP  𝑓  ∨  ( 𝐾  +  1 )  MonoAP  𝑓 )  ↔  ∃ 𝑛  ∈  ℕ ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 1 ... 𝑛 ) ) ( 〈 ( 𝑚  +  1 ) ,  𝐾 〉  PolyAP  𝑓  ∨  ( 𝐾  +  1 )  MonoAP  𝑓 ) ) ) | 
						
							| 19 | 18 | imbi2d | ⊢ ( 𝑥  =  ( 𝑚  +  1 )  →  ( ( 𝜑  →  ∃ 𝑛  ∈  ℕ ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 1 ... 𝑛 ) ) ( 〈 𝑥 ,  𝐾 〉  PolyAP  𝑓  ∨  ( 𝐾  +  1 )  MonoAP  𝑓 ) )  ↔  ( 𝜑  →  ∃ 𝑛  ∈  ℕ ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 1 ... 𝑛 ) ) ( 〈 ( 𝑚  +  1 ) ,  𝐾 〉  PolyAP  𝑓  ∨  ( 𝐾  +  1 )  MonoAP  𝑓 ) ) ) ) | 
						
							| 20 |  | opeq1 | ⊢ ( 𝑥  =  𝑀  →  〈 𝑥 ,  𝐾 〉  =  〈 𝑀 ,  𝐾 〉 ) | 
						
							| 21 | 20 | breq1d | ⊢ ( 𝑥  =  𝑀  →  ( 〈 𝑥 ,  𝐾 〉  PolyAP  𝑓  ↔  〈 𝑀 ,  𝐾 〉  PolyAP  𝑓 ) ) | 
						
							| 22 | 21 | orbi1d | ⊢ ( 𝑥  =  𝑀  →  ( ( 〈 𝑥 ,  𝐾 〉  PolyAP  𝑓  ∨  ( 𝐾  +  1 )  MonoAP  𝑓 )  ↔  ( 〈 𝑀 ,  𝐾 〉  PolyAP  𝑓  ∨  ( 𝐾  +  1 )  MonoAP  𝑓 ) ) ) | 
						
							| 23 | 22 | rexralbidv | ⊢ ( 𝑥  =  𝑀  →  ( ∃ 𝑛  ∈  ℕ ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 1 ... 𝑛 ) ) ( 〈 𝑥 ,  𝐾 〉  PolyAP  𝑓  ∨  ( 𝐾  +  1 )  MonoAP  𝑓 )  ↔  ∃ 𝑛  ∈  ℕ ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 1 ... 𝑛 ) ) ( 〈 𝑀 ,  𝐾 〉  PolyAP  𝑓  ∨  ( 𝐾  +  1 )  MonoAP  𝑓 ) ) ) | 
						
							| 24 | 23 | imbi2d | ⊢ ( 𝑥  =  𝑀  →  ( ( 𝜑  →  ∃ 𝑛  ∈  ℕ ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 1 ... 𝑛 ) ) ( 〈 𝑥 ,  𝐾 〉  PolyAP  𝑓  ∨  ( 𝐾  +  1 )  MonoAP  𝑓 ) )  ↔  ( 𝜑  →  ∃ 𝑛  ∈  ℕ ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 1 ... 𝑛 ) ) ( 〈 𝑀 ,  𝐾 〉  PolyAP  𝑓  ∨  ( 𝐾  +  1 )  MonoAP  𝑓 ) ) ) ) | 
						
							| 25 |  | oveq1 | ⊢ ( 𝑠  =  𝑅  →  ( 𝑠  ↑m  ( 1 ... 𝑛 ) )  =  ( 𝑅  ↑m  ( 1 ... 𝑛 ) ) ) | 
						
							| 26 | 25 | raleqdv | ⊢ ( 𝑠  =  𝑅  →  ( ∀ 𝑓  ∈  ( 𝑠  ↑m  ( 1 ... 𝑛 ) ) 𝐾  MonoAP  𝑓  ↔  ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 1 ... 𝑛 ) ) 𝐾  MonoAP  𝑓 ) ) | 
						
							| 27 | 26 | rexbidv | ⊢ ( 𝑠  =  𝑅  →  ( ∃ 𝑛  ∈  ℕ ∀ 𝑓  ∈  ( 𝑠  ↑m  ( 1 ... 𝑛 ) ) 𝐾  MonoAP  𝑓  ↔  ∃ 𝑛  ∈  ℕ ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 1 ... 𝑛 ) ) 𝐾  MonoAP  𝑓 ) ) | 
						
							| 28 | 27 3 1 | rspcdva | ⊢ ( 𝜑  →  ∃ 𝑛  ∈  ℕ ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 1 ... 𝑛 ) ) 𝐾  MonoAP  𝑓 ) | 
						
							| 29 |  | oveq2 | ⊢ ( 𝑛  =  𝑤  →  ( 1 ... 𝑛 )  =  ( 1 ... 𝑤 ) ) | 
						
							| 30 | 29 | oveq2d | ⊢ ( 𝑛  =  𝑤  →  ( 𝑅  ↑m  ( 1 ... 𝑛 ) )  =  ( 𝑅  ↑m  ( 1 ... 𝑤 ) ) ) | 
						
							| 31 | 30 | raleqdv | ⊢ ( 𝑛  =  𝑤  →  ( ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 1 ... 𝑛 ) ) 𝐾  MonoAP  𝑓  ↔  ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 1 ... 𝑤 ) ) 𝐾  MonoAP  𝑓 ) ) | 
						
							| 32 | 31 | cbvrexvw | ⊢ ( ∃ 𝑛  ∈  ℕ ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 1 ... 𝑛 ) ) 𝐾  MonoAP  𝑓  ↔  ∃ 𝑤  ∈  ℕ ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 1 ... 𝑤 ) ) 𝐾  MonoAP  𝑓 ) | 
						
							| 33 | 28 32 | sylib | ⊢ ( 𝜑  →  ∃ 𝑤  ∈  ℕ ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 1 ... 𝑤 ) ) 𝐾  MonoAP  𝑓 ) | 
						
							| 34 |  | breq2 | ⊢ ( 𝑓  =  𝑔  →  ( 𝐾  MonoAP  𝑓  ↔  𝐾  MonoAP  𝑔 ) ) | 
						
							| 35 | 34 | cbvralvw | ⊢ ( ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 1 ... 𝑤 ) ) 𝐾  MonoAP  𝑓  ↔  ∀ 𝑔  ∈  ( 𝑅  ↑m  ( 1 ... 𝑤 ) ) 𝐾  MonoAP  𝑔 ) | 
						
							| 36 |  | 2nn | ⊢ 2  ∈  ℕ | 
						
							| 37 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ℕ )  →  𝑤  ∈  ℕ ) | 
						
							| 38 |  | nnmulcl | ⊢ ( ( 2  ∈  ℕ  ∧  𝑤  ∈  ℕ )  →  ( 2  ·  𝑤 )  ∈  ℕ ) | 
						
							| 39 | 36 37 38 | sylancr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ℕ )  →  ( 2  ·  𝑤 )  ∈  ℕ ) | 
						
							| 40 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ℕ )  →  𝑅  ∈  Fin ) | 
						
							| 41 |  | ovex | ⊢ ( 1 ... ( 2  ·  𝑤 ) )  ∈  V | 
						
							| 42 |  | elmapg | ⊢ ( ( 𝑅  ∈  Fin  ∧  ( 1 ... ( 2  ·  𝑤 ) )  ∈  V )  →  ( 𝑓  ∈  ( 𝑅  ↑m  ( 1 ... ( 2  ·  𝑤 ) ) )  ↔  𝑓 : ( 1 ... ( 2  ·  𝑤 ) ) ⟶ 𝑅 ) ) | 
						
							| 43 | 40 41 42 | sylancl | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ℕ )  →  ( 𝑓  ∈  ( 𝑅  ↑m  ( 1 ... ( 2  ·  𝑤 ) ) )  ↔  𝑓 : ( 1 ... ( 2  ·  𝑤 ) ) ⟶ 𝑅 ) ) | 
						
							| 44 | 43 | biimpa | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ℕ )  ∧  𝑓  ∈  ( 𝑅  ↑m  ( 1 ... ( 2  ·  𝑤 ) ) ) )  →  𝑓 : ( 1 ... ( 2  ·  𝑤 ) ) ⟶ 𝑅 ) | 
						
							| 45 |  | simplr | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  ℕ )  ∧  𝑓 : ( 1 ... ( 2  ·  𝑤 ) ) ⟶ 𝑅 )  ∧  𝑦  ∈  ( 1 ... 𝑤 ) )  →  𝑓 : ( 1 ... ( 2  ·  𝑤 ) ) ⟶ 𝑅 ) | 
						
							| 46 |  | elfznn | ⊢ ( 𝑦  ∈  ( 1 ... 𝑤 )  →  𝑦  ∈  ℕ ) | 
						
							| 47 | 46 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  ℕ )  ∧  𝑓 : ( 1 ... ( 2  ·  𝑤 ) ) ⟶ 𝑅 )  ∧  𝑦  ∈  ( 1 ... 𝑤 ) )  →  𝑦  ∈  ℕ ) | 
						
							| 48 | 47 | nnred | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  ℕ )  ∧  𝑓 : ( 1 ... ( 2  ·  𝑤 ) ) ⟶ 𝑅 )  ∧  𝑦  ∈  ( 1 ... 𝑤 ) )  →  𝑦  ∈  ℝ ) | 
						
							| 49 |  | simpllr | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  ℕ )  ∧  𝑓 : ( 1 ... ( 2  ·  𝑤 ) ) ⟶ 𝑅 )  ∧  𝑦  ∈  ( 1 ... 𝑤 ) )  →  𝑤  ∈  ℕ ) | 
						
							| 50 | 49 | nnred | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  ℕ )  ∧  𝑓 : ( 1 ... ( 2  ·  𝑤 ) ) ⟶ 𝑅 )  ∧  𝑦  ∈  ( 1 ... 𝑤 ) )  →  𝑤  ∈  ℝ ) | 
						
							| 51 |  | elfzle2 | ⊢ ( 𝑦  ∈  ( 1 ... 𝑤 )  →  𝑦  ≤  𝑤 ) | 
						
							| 52 | 51 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  ℕ )  ∧  𝑓 : ( 1 ... ( 2  ·  𝑤 ) ) ⟶ 𝑅 )  ∧  𝑦  ∈  ( 1 ... 𝑤 ) )  →  𝑦  ≤  𝑤 ) | 
						
							| 53 | 48 50 50 52 | leadd1dd | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  ℕ )  ∧  𝑓 : ( 1 ... ( 2  ·  𝑤 ) ) ⟶ 𝑅 )  ∧  𝑦  ∈  ( 1 ... 𝑤 ) )  →  ( 𝑦  +  𝑤 )  ≤  ( 𝑤  +  𝑤 ) ) | 
						
							| 54 | 49 | nncnd | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  ℕ )  ∧  𝑓 : ( 1 ... ( 2  ·  𝑤 ) ) ⟶ 𝑅 )  ∧  𝑦  ∈  ( 1 ... 𝑤 ) )  →  𝑤  ∈  ℂ ) | 
						
							| 55 | 54 | 2timesd | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  ℕ )  ∧  𝑓 : ( 1 ... ( 2  ·  𝑤 ) ) ⟶ 𝑅 )  ∧  𝑦  ∈  ( 1 ... 𝑤 ) )  →  ( 2  ·  𝑤 )  =  ( 𝑤  +  𝑤 ) ) | 
						
							| 56 | 53 55 | breqtrrd | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  ℕ )  ∧  𝑓 : ( 1 ... ( 2  ·  𝑤 ) ) ⟶ 𝑅 )  ∧  𝑦  ∈  ( 1 ... 𝑤 ) )  →  ( 𝑦  +  𝑤 )  ≤  ( 2  ·  𝑤 ) ) | 
						
							| 57 | 47 49 | nnaddcld | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  ℕ )  ∧  𝑓 : ( 1 ... ( 2  ·  𝑤 ) ) ⟶ 𝑅 )  ∧  𝑦  ∈  ( 1 ... 𝑤 ) )  →  ( 𝑦  +  𝑤 )  ∈  ℕ ) | 
						
							| 58 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 59 | 57 58 | eleqtrdi | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  ℕ )  ∧  𝑓 : ( 1 ... ( 2  ·  𝑤 ) ) ⟶ 𝑅 )  ∧  𝑦  ∈  ( 1 ... 𝑤 ) )  →  ( 𝑦  +  𝑤 )  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 60 | 39 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  ℕ )  ∧  𝑓 : ( 1 ... ( 2  ·  𝑤 ) ) ⟶ 𝑅 )  ∧  𝑦  ∈  ( 1 ... 𝑤 ) )  →  ( 2  ·  𝑤 )  ∈  ℕ ) | 
						
							| 61 | 60 | nnzd | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  ℕ )  ∧  𝑓 : ( 1 ... ( 2  ·  𝑤 ) ) ⟶ 𝑅 )  ∧  𝑦  ∈  ( 1 ... 𝑤 ) )  →  ( 2  ·  𝑤 )  ∈  ℤ ) | 
						
							| 62 |  | elfz5 | ⊢ ( ( ( 𝑦  +  𝑤 )  ∈  ( ℤ≥ ‘ 1 )  ∧  ( 2  ·  𝑤 )  ∈  ℤ )  →  ( ( 𝑦  +  𝑤 )  ∈  ( 1 ... ( 2  ·  𝑤 ) )  ↔  ( 𝑦  +  𝑤 )  ≤  ( 2  ·  𝑤 ) ) ) | 
						
							| 63 | 59 61 62 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  ℕ )  ∧  𝑓 : ( 1 ... ( 2  ·  𝑤 ) ) ⟶ 𝑅 )  ∧  𝑦  ∈  ( 1 ... 𝑤 ) )  →  ( ( 𝑦  +  𝑤 )  ∈  ( 1 ... ( 2  ·  𝑤 ) )  ↔  ( 𝑦  +  𝑤 )  ≤  ( 2  ·  𝑤 ) ) ) | 
						
							| 64 | 56 63 | mpbird | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  ℕ )  ∧  𝑓 : ( 1 ... ( 2  ·  𝑤 ) ) ⟶ 𝑅 )  ∧  𝑦  ∈  ( 1 ... 𝑤 ) )  →  ( 𝑦  +  𝑤 )  ∈  ( 1 ... ( 2  ·  𝑤 ) ) ) | 
						
							| 65 | 45 64 | ffvelcdmd | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  ℕ )  ∧  𝑓 : ( 1 ... ( 2  ·  𝑤 ) ) ⟶ 𝑅 )  ∧  𝑦  ∈  ( 1 ... 𝑤 ) )  →  ( 𝑓 ‘ ( 𝑦  +  𝑤 ) )  ∈  𝑅 ) | 
						
							| 66 |  | fvoveq1 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑓 ‘ ( 𝑥  +  𝑤 ) )  =  ( 𝑓 ‘ ( 𝑦  +  𝑤 ) ) ) | 
						
							| 67 | 66 | cbvmptv | ⊢ ( 𝑥  ∈  ( 1 ... 𝑤 )  ↦  ( 𝑓 ‘ ( 𝑥  +  𝑤 ) ) )  =  ( 𝑦  ∈  ( 1 ... 𝑤 )  ↦  ( 𝑓 ‘ ( 𝑦  +  𝑤 ) ) ) | 
						
							| 68 | 65 67 | fmptd | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ℕ )  ∧  𝑓 : ( 1 ... ( 2  ·  𝑤 ) ) ⟶ 𝑅 )  →  ( 𝑥  ∈  ( 1 ... 𝑤 )  ↦  ( 𝑓 ‘ ( 𝑥  +  𝑤 ) ) ) : ( 1 ... 𝑤 ) ⟶ 𝑅 ) | 
						
							| 69 |  | ovex | ⊢ ( 1 ... 𝑤 )  ∈  V | 
						
							| 70 |  | elmapg | ⊢ ( ( 𝑅  ∈  Fin  ∧  ( 1 ... 𝑤 )  ∈  V )  →  ( ( 𝑥  ∈  ( 1 ... 𝑤 )  ↦  ( 𝑓 ‘ ( 𝑥  +  𝑤 ) ) )  ∈  ( 𝑅  ↑m  ( 1 ... 𝑤 ) )  ↔  ( 𝑥  ∈  ( 1 ... 𝑤 )  ↦  ( 𝑓 ‘ ( 𝑥  +  𝑤 ) ) ) : ( 1 ... 𝑤 ) ⟶ 𝑅 ) ) | 
						
							| 71 | 40 69 70 | sylancl | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ℕ )  →  ( ( 𝑥  ∈  ( 1 ... 𝑤 )  ↦  ( 𝑓 ‘ ( 𝑥  +  𝑤 ) ) )  ∈  ( 𝑅  ↑m  ( 1 ... 𝑤 ) )  ↔  ( 𝑥  ∈  ( 1 ... 𝑤 )  ↦  ( 𝑓 ‘ ( 𝑥  +  𝑤 ) ) ) : ( 1 ... 𝑤 ) ⟶ 𝑅 ) ) | 
						
							| 72 | 71 | biimpar | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ℕ )  ∧  ( 𝑥  ∈  ( 1 ... 𝑤 )  ↦  ( 𝑓 ‘ ( 𝑥  +  𝑤 ) ) ) : ( 1 ... 𝑤 ) ⟶ 𝑅 )  →  ( 𝑥  ∈  ( 1 ... 𝑤 )  ↦  ( 𝑓 ‘ ( 𝑥  +  𝑤 ) ) )  ∈  ( 𝑅  ↑m  ( 1 ... 𝑤 ) ) ) | 
						
							| 73 | 68 72 | syldan | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ℕ )  ∧  𝑓 : ( 1 ... ( 2  ·  𝑤 ) ) ⟶ 𝑅 )  →  ( 𝑥  ∈  ( 1 ... 𝑤 )  ↦  ( 𝑓 ‘ ( 𝑥  +  𝑤 ) ) )  ∈  ( 𝑅  ↑m  ( 1 ... 𝑤 ) ) ) | 
						
							| 74 |  | breq2 | ⊢ ( 𝑔  =  ( 𝑥  ∈  ( 1 ... 𝑤 )  ↦  ( 𝑓 ‘ ( 𝑥  +  𝑤 ) ) )  →  ( 𝐾  MonoAP  𝑔  ↔  𝐾  MonoAP  ( 𝑥  ∈  ( 1 ... 𝑤 )  ↦  ( 𝑓 ‘ ( 𝑥  +  𝑤 ) ) ) ) ) | 
						
							| 75 | 74 | rspcv | ⊢ ( ( 𝑥  ∈  ( 1 ... 𝑤 )  ↦  ( 𝑓 ‘ ( 𝑥  +  𝑤 ) ) )  ∈  ( 𝑅  ↑m  ( 1 ... 𝑤 ) )  →  ( ∀ 𝑔  ∈  ( 𝑅  ↑m  ( 1 ... 𝑤 ) ) 𝐾  MonoAP  𝑔  →  𝐾  MonoAP  ( 𝑥  ∈  ( 1 ... 𝑤 )  ↦  ( 𝑓 ‘ ( 𝑥  +  𝑤 ) ) ) ) ) | 
						
							| 76 | 73 75 | syl | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ℕ )  ∧  𝑓 : ( 1 ... ( 2  ·  𝑤 ) ) ⟶ 𝑅 )  →  ( ∀ 𝑔  ∈  ( 𝑅  ↑m  ( 1 ... 𝑤 ) ) 𝐾  MonoAP  𝑔  →  𝐾  MonoAP  ( 𝑥  ∈  ( 1 ... 𝑤 )  ↦  ( 𝑓 ‘ ( 𝑥  +  𝑤 ) ) ) ) ) | 
						
							| 77 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 78 | 2 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ℕ )  ∧  𝑓 : ( 1 ... ( 2  ·  𝑤 ) ) ⟶ 𝑅 )  →  𝐾  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 79 |  | eluznn0 | ⊢ ( ( 2  ∈  ℕ0  ∧  𝐾  ∈  ( ℤ≥ ‘ 2 ) )  →  𝐾  ∈  ℕ0 ) | 
						
							| 80 | 77 78 79 | sylancr | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ℕ )  ∧  𝑓 : ( 1 ... ( 2  ·  𝑤 ) ) ⟶ 𝑅 )  →  𝐾  ∈  ℕ0 ) | 
						
							| 81 | 69 80 68 | vdwmc | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ℕ )  ∧  𝑓 : ( 1 ... ( 2  ·  𝑤 ) ) ⟶ 𝑅 )  →  ( 𝐾  MonoAP  ( 𝑥  ∈  ( 1 ... 𝑤 )  ↦  ( 𝑓 ‘ ( 𝑥  +  𝑤 ) ) )  ↔  ∃ 𝑐 ∃ 𝑎  ∈  ℕ ∃ 𝑑  ∈  ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ ( 𝑥  ∈  ( 1 ... 𝑤 )  ↦  ( 𝑓 ‘ ( 𝑥  +  𝑤 ) ) )  “  { 𝑐 } ) ) ) | 
						
							| 82 | 40 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  ℕ )  ∧  𝑓 : ( 1 ... ( 2  ·  𝑤 ) ) ⟶ 𝑅 )  ∧  ( ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ ( 𝑥  ∈  ( 1 ... 𝑤 )  ↦  ( 𝑓 ‘ ( 𝑥  +  𝑤 ) ) )  “  { 𝑐 } ) ) )  →  𝑅  ∈  Fin ) | 
						
							| 83 | 78 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  ℕ )  ∧  𝑓 : ( 1 ... ( 2  ·  𝑤 ) ) ⟶ 𝑅 )  ∧  ( ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ ( 𝑥  ∈  ( 1 ... 𝑤 )  ↦  ( 𝑓 ‘ ( 𝑥  +  𝑤 ) ) )  “  { 𝑐 } ) ) )  →  𝐾  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 84 |  | simpllr | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  ℕ )  ∧  𝑓 : ( 1 ... ( 2  ·  𝑤 ) ) ⟶ 𝑅 )  ∧  ( ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ ( 𝑥  ∈  ( 1 ... 𝑤 )  ↦  ( 𝑓 ‘ ( 𝑥  +  𝑤 ) ) )  “  { 𝑐 } ) ) )  →  𝑤  ∈  ℕ ) | 
						
							| 85 |  | simplr | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  ℕ )  ∧  𝑓 : ( 1 ... ( 2  ·  𝑤 ) ) ⟶ 𝑅 )  ∧  ( ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ ( 𝑥  ∈  ( 1 ... 𝑤 )  ↦  ( 𝑓 ‘ ( 𝑥  +  𝑤 ) ) )  “  { 𝑐 } ) ) )  →  𝑓 : ( 1 ... ( 2  ·  𝑤 ) ) ⟶ 𝑅 ) | 
						
							| 86 |  | vex | ⊢ 𝑐  ∈  V | 
						
							| 87 |  | simprll | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  ℕ )  ∧  𝑓 : ( 1 ... ( 2  ·  𝑤 ) ) ⟶ 𝑅 )  ∧  ( ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ ( 𝑥  ∈  ( 1 ... 𝑤 )  ↦  ( 𝑓 ‘ ( 𝑥  +  𝑤 ) ) )  “  { 𝑐 } ) ) )  →  𝑎  ∈  ℕ ) | 
						
							| 88 |  | simprlr | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  ℕ )  ∧  𝑓 : ( 1 ... ( 2  ·  𝑤 ) ) ⟶ 𝑅 )  ∧  ( ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ ( 𝑥  ∈  ( 1 ... 𝑤 )  ↦  ( 𝑓 ‘ ( 𝑥  +  𝑤 ) ) )  “  { 𝑐 } ) ) )  →  𝑑  ∈  ℕ ) | 
						
							| 89 |  | simprr | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  ℕ )  ∧  𝑓 : ( 1 ... ( 2  ·  𝑤 ) ) ⟶ 𝑅 )  ∧  ( ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ ( 𝑥  ∈  ( 1 ... 𝑤 )  ↦  ( 𝑓 ‘ ( 𝑥  +  𝑤 ) ) )  “  { 𝑐 } ) ) )  →  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ ( 𝑥  ∈  ( 1 ... 𝑤 )  ↦  ( 𝑓 ‘ ( 𝑥  +  𝑤 ) ) )  “  { 𝑐 } ) ) | 
						
							| 90 | 82 83 84 85 86 87 88 89 67 | vdwlem8 | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  ℕ )  ∧  𝑓 : ( 1 ... ( 2  ·  𝑤 ) ) ⟶ 𝑅 )  ∧  ( ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ ( 𝑥  ∈  ( 1 ... 𝑤 )  ↦  ( 𝑓 ‘ ( 𝑥  +  𝑤 ) ) )  “  { 𝑐 } ) ) )  →  〈 1 ,  𝐾 〉  PolyAP  𝑓 ) | 
						
							| 91 | 90 | orcd | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  ℕ )  ∧  𝑓 : ( 1 ... ( 2  ·  𝑤 ) ) ⟶ 𝑅 )  ∧  ( ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ ( 𝑥  ∈  ( 1 ... 𝑤 )  ↦  ( 𝑓 ‘ ( 𝑥  +  𝑤 ) ) )  “  { 𝑐 } ) ) )  →  ( 〈 1 ,  𝐾 〉  PolyAP  𝑓  ∨  ( 𝐾  +  1 )  MonoAP  𝑓 ) ) | 
						
							| 92 | 91 | expr | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  ℕ )  ∧  𝑓 : ( 1 ... ( 2  ·  𝑤 ) ) ⟶ 𝑅 )  ∧  ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ ) )  →  ( ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ ( 𝑥  ∈  ( 1 ... 𝑤 )  ↦  ( 𝑓 ‘ ( 𝑥  +  𝑤 ) ) )  “  { 𝑐 } )  →  ( 〈 1 ,  𝐾 〉  PolyAP  𝑓  ∨  ( 𝐾  +  1 )  MonoAP  𝑓 ) ) ) | 
						
							| 93 | 92 | rexlimdvva | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ℕ )  ∧  𝑓 : ( 1 ... ( 2  ·  𝑤 ) ) ⟶ 𝑅 )  →  ( ∃ 𝑎  ∈  ℕ ∃ 𝑑  ∈  ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ ( 𝑥  ∈  ( 1 ... 𝑤 )  ↦  ( 𝑓 ‘ ( 𝑥  +  𝑤 ) ) )  “  { 𝑐 } )  →  ( 〈 1 ,  𝐾 〉  PolyAP  𝑓  ∨  ( 𝐾  +  1 )  MonoAP  𝑓 ) ) ) | 
						
							| 94 | 93 | exlimdv | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ℕ )  ∧  𝑓 : ( 1 ... ( 2  ·  𝑤 ) ) ⟶ 𝑅 )  →  ( ∃ 𝑐 ∃ 𝑎  ∈  ℕ ∃ 𝑑  ∈  ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ ( 𝑥  ∈  ( 1 ... 𝑤 )  ↦  ( 𝑓 ‘ ( 𝑥  +  𝑤 ) ) )  “  { 𝑐 } )  →  ( 〈 1 ,  𝐾 〉  PolyAP  𝑓  ∨  ( 𝐾  +  1 )  MonoAP  𝑓 ) ) ) | 
						
							| 95 | 81 94 | sylbid | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ℕ )  ∧  𝑓 : ( 1 ... ( 2  ·  𝑤 ) ) ⟶ 𝑅 )  →  ( 𝐾  MonoAP  ( 𝑥  ∈  ( 1 ... 𝑤 )  ↦  ( 𝑓 ‘ ( 𝑥  +  𝑤 ) ) )  →  ( 〈 1 ,  𝐾 〉  PolyAP  𝑓  ∨  ( 𝐾  +  1 )  MonoAP  𝑓 ) ) ) | 
						
							| 96 | 76 95 | syld | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ℕ )  ∧  𝑓 : ( 1 ... ( 2  ·  𝑤 ) ) ⟶ 𝑅 )  →  ( ∀ 𝑔  ∈  ( 𝑅  ↑m  ( 1 ... 𝑤 ) ) 𝐾  MonoAP  𝑔  →  ( 〈 1 ,  𝐾 〉  PolyAP  𝑓  ∨  ( 𝐾  +  1 )  MonoAP  𝑓 ) ) ) | 
						
							| 97 | 44 96 | syldan | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ℕ )  ∧  𝑓  ∈  ( 𝑅  ↑m  ( 1 ... ( 2  ·  𝑤 ) ) ) )  →  ( ∀ 𝑔  ∈  ( 𝑅  ↑m  ( 1 ... 𝑤 ) ) 𝐾  MonoAP  𝑔  →  ( 〈 1 ,  𝐾 〉  PolyAP  𝑓  ∨  ( 𝐾  +  1 )  MonoAP  𝑓 ) ) ) | 
						
							| 98 | 97 | ralrimdva | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ℕ )  →  ( ∀ 𝑔  ∈  ( 𝑅  ↑m  ( 1 ... 𝑤 ) ) 𝐾  MonoAP  𝑔  →  ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 1 ... ( 2  ·  𝑤 ) ) ) ( 〈 1 ,  𝐾 〉  PolyAP  𝑓  ∨  ( 𝐾  +  1 )  MonoAP  𝑓 ) ) ) | 
						
							| 99 |  | oveq2 | ⊢ ( 𝑛  =  ( 2  ·  𝑤 )  →  ( 1 ... 𝑛 )  =  ( 1 ... ( 2  ·  𝑤 ) ) ) | 
						
							| 100 | 99 | oveq2d | ⊢ ( 𝑛  =  ( 2  ·  𝑤 )  →  ( 𝑅  ↑m  ( 1 ... 𝑛 ) )  =  ( 𝑅  ↑m  ( 1 ... ( 2  ·  𝑤 ) ) ) ) | 
						
							| 101 | 100 | raleqdv | ⊢ ( 𝑛  =  ( 2  ·  𝑤 )  →  ( ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 1 ... 𝑛 ) ) ( 〈 1 ,  𝐾 〉  PolyAP  𝑓  ∨  ( 𝐾  +  1 )  MonoAP  𝑓 )  ↔  ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 1 ... ( 2  ·  𝑤 ) ) ) ( 〈 1 ,  𝐾 〉  PolyAP  𝑓  ∨  ( 𝐾  +  1 )  MonoAP  𝑓 ) ) ) | 
						
							| 102 | 101 | rspcev | ⊢ ( ( ( 2  ·  𝑤 )  ∈  ℕ  ∧  ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 1 ... ( 2  ·  𝑤 ) ) ) ( 〈 1 ,  𝐾 〉  PolyAP  𝑓  ∨  ( 𝐾  +  1 )  MonoAP  𝑓 ) )  →  ∃ 𝑛  ∈  ℕ ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 1 ... 𝑛 ) ) ( 〈 1 ,  𝐾 〉  PolyAP  𝑓  ∨  ( 𝐾  +  1 )  MonoAP  𝑓 ) ) | 
						
							| 103 | 39 98 102 | syl6an | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ℕ )  →  ( ∀ 𝑔  ∈  ( 𝑅  ↑m  ( 1 ... 𝑤 ) ) 𝐾  MonoAP  𝑔  →  ∃ 𝑛  ∈  ℕ ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 1 ... 𝑛 ) ) ( 〈 1 ,  𝐾 〉  PolyAP  𝑓  ∨  ( 𝐾  +  1 )  MonoAP  𝑓 ) ) ) | 
						
							| 104 | 35 103 | biimtrid | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ℕ )  →  ( ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 1 ... 𝑤 ) ) 𝐾  MonoAP  𝑓  →  ∃ 𝑛  ∈  ℕ ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 1 ... 𝑛 ) ) ( 〈 1 ,  𝐾 〉  PolyAP  𝑓  ∨  ( 𝐾  +  1 )  MonoAP  𝑓 ) ) ) | 
						
							| 105 | 104 | rexlimdva | ⊢ ( 𝜑  →  ( ∃ 𝑤  ∈  ℕ ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 1 ... 𝑤 ) ) 𝐾  MonoAP  𝑓  →  ∃ 𝑛  ∈  ℕ ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 1 ... 𝑛 ) ) ( 〈 1 ,  𝐾 〉  PolyAP  𝑓  ∨  ( 𝐾  +  1 )  MonoAP  𝑓 ) ) ) | 
						
							| 106 | 33 105 | mpd | ⊢ ( 𝜑  →  ∃ 𝑛  ∈  ℕ ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 1 ... 𝑛 ) ) ( 〈 1 ,  𝐾 〉  PolyAP  𝑓  ∨  ( 𝐾  +  1 )  MonoAP  𝑓 ) ) | 
						
							| 107 |  | breq2 | ⊢ ( 𝑓  =  𝑔  →  ( 〈 𝑚 ,  𝐾 〉  PolyAP  𝑓  ↔  〈 𝑚 ,  𝐾 〉  PolyAP  𝑔 ) ) | 
						
							| 108 |  | breq2 | ⊢ ( 𝑓  =  𝑔  →  ( ( 𝐾  +  1 )  MonoAP  𝑓  ↔  ( 𝐾  +  1 )  MonoAP  𝑔 ) ) | 
						
							| 109 | 107 108 | orbi12d | ⊢ ( 𝑓  =  𝑔  →  ( ( 〈 𝑚 ,  𝐾 〉  PolyAP  𝑓  ∨  ( 𝐾  +  1 )  MonoAP  𝑓 )  ↔  ( 〈 𝑚 ,  𝐾 〉  PolyAP  𝑔  ∨  ( 𝐾  +  1 )  MonoAP  𝑔 ) ) ) | 
						
							| 110 | 109 | cbvralvw | ⊢ ( ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 1 ... 𝑛 ) ) ( 〈 𝑚 ,  𝐾 〉  PolyAP  𝑓  ∨  ( 𝐾  +  1 )  MonoAP  𝑓 )  ↔  ∀ 𝑔  ∈  ( 𝑅  ↑m  ( 1 ... 𝑛 ) ) ( 〈 𝑚 ,  𝐾 〉  PolyAP  𝑔  ∨  ( 𝐾  +  1 )  MonoAP  𝑔 ) ) | 
						
							| 111 | 30 | raleqdv | ⊢ ( 𝑛  =  𝑤  →  ( ∀ 𝑔  ∈  ( 𝑅  ↑m  ( 1 ... 𝑛 ) ) ( 〈 𝑚 ,  𝐾 〉  PolyAP  𝑔  ∨  ( 𝐾  +  1 )  MonoAP  𝑔 )  ↔  ∀ 𝑔  ∈  ( 𝑅  ↑m  ( 1 ... 𝑤 ) ) ( 〈 𝑚 ,  𝐾 〉  PolyAP  𝑔  ∨  ( 𝐾  +  1 )  MonoAP  𝑔 ) ) ) | 
						
							| 112 | 110 111 | bitrid | ⊢ ( 𝑛  =  𝑤  →  ( ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 1 ... 𝑛 ) ) ( 〈 𝑚 ,  𝐾 〉  PolyAP  𝑓  ∨  ( 𝐾  +  1 )  MonoAP  𝑓 )  ↔  ∀ 𝑔  ∈  ( 𝑅  ↑m  ( 1 ... 𝑤 ) ) ( 〈 𝑚 ,  𝐾 〉  PolyAP  𝑔  ∨  ( 𝐾  +  1 )  MonoAP  𝑔 ) ) ) | 
						
							| 113 | 112 | cbvrexvw | ⊢ ( ∃ 𝑛  ∈  ℕ ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 1 ... 𝑛 ) ) ( 〈 𝑚 ,  𝐾 〉  PolyAP  𝑓  ∨  ( 𝐾  +  1 )  MonoAP  𝑓 )  ↔  ∃ 𝑤  ∈  ℕ ∀ 𝑔  ∈  ( 𝑅  ↑m  ( 1 ... 𝑤 ) ) ( 〈 𝑚 ,  𝐾 〉  PolyAP  𝑔  ∨  ( 𝐾  +  1 )  MonoAP  𝑔 ) ) | 
						
							| 114 |  | oveq2 | ⊢ ( 𝑛  =  𝑣  →  ( 1 ... 𝑛 )  =  ( 1 ... 𝑣 ) ) | 
						
							| 115 | 114 | oveq2d | ⊢ ( 𝑛  =  𝑣  →  ( 𝑠  ↑m  ( 1 ... 𝑛 ) )  =  ( 𝑠  ↑m  ( 1 ... 𝑣 ) ) ) | 
						
							| 116 | 115 | raleqdv | ⊢ ( 𝑛  =  𝑣  →  ( ∀ 𝑓  ∈  ( 𝑠  ↑m  ( 1 ... 𝑛 ) ) 𝐾  MonoAP  𝑓  ↔  ∀ 𝑓  ∈  ( 𝑠  ↑m  ( 1 ... 𝑣 ) ) 𝐾  MonoAP  𝑓 ) ) | 
						
							| 117 | 116 | cbvrexvw | ⊢ ( ∃ 𝑛  ∈  ℕ ∀ 𝑓  ∈  ( 𝑠  ↑m  ( 1 ... 𝑛 ) ) 𝐾  MonoAP  𝑓  ↔  ∃ 𝑣  ∈  ℕ ∀ 𝑓  ∈  ( 𝑠  ↑m  ( 1 ... 𝑣 ) ) 𝐾  MonoAP  𝑓 ) | 
						
							| 118 |  | oveq1 | ⊢ ( 𝑠  =  ( 𝑅  ↑m  ( 1 ... 𝑤 ) )  →  ( 𝑠  ↑m  ( 1 ... 𝑣 ) )  =  ( ( 𝑅  ↑m  ( 1 ... 𝑤 ) )  ↑m  ( 1 ... 𝑣 ) ) ) | 
						
							| 119 | 118 | raleqdv | ⊢ ( 𝑠  =  ( 𝑅  ↑m  ( 1 ... 𝑤 ) )  →  ( ∀ 𝑓  ∈  ( 𝑠  ↑m  ( 1 ... 𝑣 ) ) 𝐾  MonoAP  𝑓  ↔  ∀ 𝑓  ∈  ( ( 𝑅  ↑m  ( 1 ... 𝑤 ) )  ↑m  ( 1 ... 𝑣 ) ) 𝐾  MonoAP  𝑓 ) ) | 
						
							| 120 | 119 | rexbidv | ⊢ ( 𝑠  =  ( 𝑅  ↑m  ( 1 ... 𝑤 ) )  →  ( ∃ 𝑣  ∈  ℕ ∀ 𝑓  ∈  ( 𝑠  ↑m  ( 1 ... 𝑣 ) ) 𝐾  MonoAP  𝑓  ↔  ∃ 𝑣  ∈  ℕ ∀ 𝑓  ∈  ( ( 𝑅  ↑m  ( 1 ... 𝑤 ) )  ↑m  ( 1 ... 𝑣 ) ) 𝐾  MonoAP  𝑓 ) ) | 
						
							| 121 | 117 120 | bitrid | ⊢ ( 𝑠  =  ( 𝑅  ↑m  ( 1 ... 𝑤 ) )  →  ( ∃ 𝑛  ∈  ℕ ∀ 𝑓  ∈  ( 𝑠  ↑m  ( 1 ... 𝑛 ) ) 𝐾  MonoAP  𝑓  ↔  ∃ 𝑣  ∈  ℕ ∀ 𝑓  ∈  ( ( 𝑅  ↑m  ( 1 ... 𝑤 ) )  ↑m  ( 1 ... 𝑣 ) ) 𝐾  MonoAP  𝑓 ) ) | 
						
							| 122 | 3 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  ( 𝑤  ∈  ℕ  ∧  ∀ 𝑔  ∈  ( 𝑅  ↑m  ( 1 ... 𝑤 ) ) ( 〈 𝑚 ,  𝐾 〉  PolyAP  𝑔  ∨  ( 𝐾  +  1 )  MonoAP  𝑔 ) ) )  →  ∀ 𝑠  ∈  Fin ∃ 𝑛  ∈  ℕ ∀ 𝑓  ∈  ( 𝑠  ↑m  ( 1 ... 𝑛 ) ) 𝐾  MonoAP  𝑓 ) | 
						
							| 123 | 1 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  ( 𝑤  ∈  ℕ  ∧  ∀ 𝑔  ∈  ( 𝑅  ↑m  ( 1 ... 𝑤 ) ) ( 〈 𝑚 ,  𝐾 〉  PolyAP  𝑔  ∨  ( 𝐾  +  1 )  MonoAP  𝑔 ) ) )  →  𝑅  ∈  Fin ) | 
						
							| 124 |  | fzfi | ⊢ ( 1 ... 𝑤 )  ∈  Fin | 
						
							| 125 |  | mapfi | ⊢ ( ( 𝑅  ∈  Fin  ∧  ( 1 ... 𝑤 )  ∈  Fin )  →  ( 𝑅  ↑m  ( 1 ... 𝑤 ) )  ∈  Fin ) | 
						
							| 126 | 123 124 125 | sylancl | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  ( 𝑤  ∈  ℕ  ∧  ∀ 𝑔  ∈  ( 𝑅  ↑m  ( 1 ... 𝑤 ) ) ( 〈 𝑚 ,  𝐾 〉  PolyAP  𝑔  ∨  ( 𝐾  +  1 )  MonoAP  𝑔 ) ) )  →  ( 𝑅  ↑m  ( 1 ... 𝑤 ) )  ∈  Fin ) | 
						
							| 127 | 121 122 126 | rspcdva | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  ( 𝑤  ∈  ℕ  ∧  ∀ 𝑔  ∈  ( 𝑅  ↑m  ( 1 ... 𝑤 ) ) ( 〈 𝑚 ,  𝐾 〉  PolyAP  𝑔  ∨  ( 𝐾  +  1 )  MonoAP  𝑔 ) ) )  →  ∃ 𝑣  ∈  ℕ ∀ 𝑓  ∈  ( ( 𝑅  ↑m  ( 1 ... 𝑤 ) )  ↑m  ( 1 ... 𝑣 ) ) 𝐾  MonoAP  𝑓 ) | 
						
							| 128 |  | simprll | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  ( ( 𝑤  ∈  ℕ  ∧  ∀ 𝑔  ∈  ( 𝑅  ↑m  ( 1 ... 𝑤 ) ) ( 〈 𝑚 ,  𝐾 〉  PolyAP  𝑔  ∨  ( 𝐾  +  1 )  MonoAP  𝑔 ) )  ∧  ( 𝑣  ∈  ℕ  ∧  ∀ 𝑓  ∈  ( ( 𝑅  ↑m  ( 1 ... 𝑤 ) )  ↑m  ( 1 ... 𝑣 ) ) 𝐾  MonoAP  𝑓 ) ) )  →  𝑤  ∈  ℕ ) | 
						
							| 129 |  | simprrl | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  ( ( 𝑤  ∈  ℕ  ∧  ∀ 𝑔  ∈  ( 𝑅  ↑m  ( 1 ... 𝑤 ) ) ( 〈 𝑚 ,  𝐾 〉  PolyAP  𝑔  ∨  ( 𝐾  +  1 )  MonoAP  𝑔 ) )  ∧  ( 𝑣  ∈  ℕ  ∧  ∀ 𝑓  ∈  ( ( 𝑅  ↑m  ( 1 ... 𝑤 ) )  ↑m  ( 1 ... 𝑣 ) ) 𝐾  MonoAP  𝑓 ) ) )  →  𝑣  ∈  ℕ ) | 
						
							| 130 |  | nnmulcl | ⊢ ( ( 2  ∈  ℕ  ∧  𝑣  ∈  ℕ )  →  ( 2  ·  𝑣 )  ∈  ℕ ) | 
						
							| 131 | 36 130 | mpan | ⊢ ( 𝑣  ∈  ℕ  →  ( 2  ·  𝑣 )  ∈  ℕ ) | 
						
							| 132 |  | nnmulcl | ⊢ ( ( 𝑤  ∈  ℕ  ∧  ( 2  ·  𝑣 )  ∈  ℕ )  →  ( 𝑤  ·  ( 2  ·  𝑣 ) )  ∈  ℕ ) | 
						
							| 133 | 131 132 | sylan2 | ⊢ ( ( 𝑤  ∈  ℕ  ∧  𝑣  ∈  ℕ )  →  ( 𝑤  ·  ( 2  ·  𝑣 ) )  ∈  ℕ ) | 
						
							| 134 | 128 129 133 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  ( ( 𝑤  ∈  ℕ  ∧  ∀ 𝑔  ∈  ( 𝑅  ↑m  ( 1 ... 𝑤 ) ) ( 〈 𝑚 ,  𝐾 〉  PolyAP  𝑔  ∨  ( 𝐾  +  1 )  MonoAP  𝑔 ) )  ∧  ( 𝑣  ∈  ℕ  ∧  ∀ 𝑓  ∈  ( ( 𝑅  ↑m  ( 1 ... 𝑤 ) )  ↑m  ( 1 ... 𝑣 ) ) 𝐾  MonoAP  𝑓 ) ) )  →  ( 𝑤  ·  ( 2  ·  𝑣 ) )  ∈  ℕ ) | 
						
							| 135 |  | simp1l | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  ( ( 𝑤  ∈  ℕ  ∧  ∀ 𝑔  ∈  ( 𝑅  ↑m  ( 1 ... 𝑤 ) ) ( 〈 𝑚 ,  𝐾 〉  PolyAP  𝑔  ∨  ( 𝐾  +  1 )  MonoAP  𝑔 ) )  ∧  ( 𝑣  ∈  ℕ  ∧  ∀ 𝑓  ∈  ( ( 𝑅  ↑m  ( 1 ... 𝑤 ) )  ↑m  ( 1 ... 𝑣 ) ) 𝐾  MonoAP  𝑓 ) )  ∧  ℎ  ∈  ( 𝑅  ↑m  ( 1 ... ( 𝑤  ·  ( 2  ·  𝑣 ) ) ) ) )  →  𝜑 ) | 
						
							| 136 | 135 1 | syl | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  ( ( 𝑤  ∈  ℕ  ∧  ∀ 𝑔  ∈  ( 𝑅  ↑m  ( 1 ... 𝑤 ) ) ( 〈 𝑚 ,  𝐾 〉  PolyAP  𝑔  ∨  ( 𝐾  +  1 )  MonoAP  𝑔 ) )  ∧  ( 𝑣  ∈  ℕ  ∧  ∀ 𝑓  ∈  ( ( 𝑅  ↑m  ( 1 ... 𝑤 ) )  ↑m  ( 1 ... 𝑣 ) ) 𝐾  MonoAP  𝑓 ) )  ∧  ℎ  ∈  ( 𝑅  ↑m  ( 1 ... ( 𝑤  ·  ( 2  ·  𝑣 ) ) ) ) )  →  𝑅  ∈  Fin ) | 
						
							| 137 | 135 2 | syl | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  ( ( 𝑤  ∈  ℕ  ∧  ∀ 𝑔  ∈  ( 𝑅  ↑m  ( 1 ... 𝑤 ) ) ( 〈 𝑚 ,  𝐾 〉  PolyAP  𝑔  ∨  ( 𝐾  +  1 )  MonoAP  𝑔 ) )  ∧  ( 𝑣  ∈  ℕ  ∧  ∀ 𝑓  ∈  ( ( 𝑅  ↑m  ( 1 ... 𝑤 ) )  ↑m  ( 1 ... 𝑣 ) ) 𝐾  MonoAP  𝑓 ) )  ∧  ℎ  ∈  ( 𝑅  ↑m  ( 1 ... ( 𝑤  ·  ( 2  ·  𝑣 ) ) ) ) )  →  𝐾  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 138 | 135 3 | syl | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  ( ( 𝑤  ∈  ℕ  ∧  ∀ 𝑔  ∈  ( 𝑅  ↑m  ( 1 ... 𝑤 ) ) ( 〈 𝑚 ,  𝐾 〉  PolyAP  𝑔  ∨  ( 𝐾  +  1 )  MonoAP  𝑔 ) )  ∧  ( 𝑣  ∈  ℕ  ∧  ∀ 𝑓  ∈  ( ( 𝑅  ↑m  ( 1 ... 𝑤 ) )  ↑m  ( 1 ... 𝑣 ) ) 𝐾  MonoAP  𝑓 ) )  ∧  ℎ  ∈  ( 𝑅  ↑m  ( 1 ... ( 𝑤  ·  ( 2  ·  𝑣 ) ) ) ) )  →  ∀ 𝑠  ∈  Fin ∃ 𝑛  ∈  ℕ ∀ 𝑓  ∈  ( 𝑠  ↑m  ( 1 ... 𝑛 ) ) 𝐾  MonoAP  𝑓 ) | 
						
							| 139 |  | simp1r | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  ( ( 𝑤  ∈  ℕ  ∧  ∀ 𝑔  ∈  ( 𝑅  ↑m  ( 1 ... 𝑤 ) ) ( 〈 𝑚 ,  𝐾 〉  PolyAP  𝑔  ∨  ( 𝐾  +  1 )  MonoAP  𝑔 ) )  ∧  ( 𝑣  ∈  ℕ  ∧  ∀ 𝑓  ∈  ( ( 𝑅  ↑m  ( 1 ... 𝑤 ) )  ↑m  ( 1 ... 𝑣 ) ) 𝐾  MonoAP  𝑓 ) )  ∧  ℎ  ∈  ( 𝑅  ↑m  ( 1 ... ( 𝑤  ·  ( 2  ·  𝑣 ) ) ) ) )  →  𝑚  ∈  ℕ ) | 
						
							| 140 |  | simp2ll | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  ( ( 𝑤  ∈  ℕ  ∧  ∀ 𝑔  ∈  ( 𝑅  ↑m  ( 1 ... 𝑤 ) ) ( 〈 𝑚 ,  𝐾 〉  PolyAP  𝑔  ∨  ( 𝐾  +  1 )  MonoAP  𝑔 ) )  ∧  ( 𝑣  ∈  ℕ  ∧  ∀ 𝑓  ∈  ( ( 𝑅  ↑m  ( 1 ... 𝑤 ) )  ↑m  ( 1 ... 𝑣 ) ) 𝐾  MonoAP  𝑓 ) )  ∧  ℎ  ∈  ( 𝑅  ↑m  ( 1 ... ( 𝑤  ·  ( 2  ·  𝑣 ) ) ) ) )  →  𝑤  ∈  ℕ ) | 
						
							| 141 |  | simp2lr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  ( ( 𝑤  ∈  ℕ  ∧  ∀ 𝑔  ∈  ( 𝑅  ↑m  ( 1 ... 𝑤 ) ) ( 〈 𝑚 ,  𝐾 〉  PolyAP  𝑔  ∨  ( 𝐾  +  1 )  MonoAP  𝑔 ) )  ∧  ( 𝑣  ∈  ℕ  ∧  ∀ 𝑓  ∈  ( ( 𝑅  ↑m  ( 1 ... 𝑤 ) )  ↑m  ( 1 ... 𝑣 ) ) 𝐾  MonoAP  𝑓 ) )  ∧  ℎ  ∈  ( 𝑅  ↑m  ( 1 ... ( 𝑤  ·  ( 2  ·  𝑣 ) ) ) ) )  →  ∀ 𝑔  ∈  ( 𝑅  ↑m  ( 1 ... 𝑤 ) ) ( 〈 𝑚 ,  𝐾 〉  PolyAP  𝑔  ∨  ( 𝐾  +  1 )  MonoAP  𝑔 ) ) | 
						
							| 142 |  | breq2 | ⊢ ( 𝑔  =  𝑘  →  ( 〈 𝑚 ,  𝐾 〉  PolyAP  𝑔  ↔  〈 𝑚 ,  𝐾 〉  PolyAP  𝑘 ) ) | 
						
							| 143 |  | breq2 | ⊢ ( 𝑔  =  𝑘  →  ( ( 𝐾  +  1 )  MonoAP  𝑔  ↔  ( 𝐾  +  1 )  MonoAP  𝑘 ) ) | 
						
							| 144 | 142 143 | orbi12d | ⊢ ( 𝑔  =  𝑘  →  ( ( 〈 𝑚 ,  𝐾 〉  PolyAP  𝑔  ∨  ( 𝐾  +  1 )  MonoAP  𝑔 )  ↔  ( 〈 𝑚 ,  𝐾 〉  PolyAP  𝑘  ∨  ( 𝐾  +  1 )  MonoAP  𝑘 ) ) ) | 
						
							| 145 | 144 | cbvralvw | ⊢ ( ∀ 𝑔  ∈  ( 𝑅  ↑m  ( 1 ... 𝑤 ) ) ( 〈 𝑚 ,  𝐾 〉  PolyAP  𝑔  ∨  ( 𝐾  +  1 )  MonoAP  𝑔 )  ↔  ∀ 𝑘  ∈  ( 𝑅  ↑m  ( 1 ... 𝑤 ) ) ( 〈 𝑚 ,  𝐾 〉  PolyAP  𝑘  ∨  ( 𝐾  +  1 )  MonoAP  𝑘 ) ) | 
						
							| 146 | 141 145 | sylib | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  ( ( 𝑤  ∈  ℕ  ∧  ∀ 𝑔  ∈  ( 𝑅  ↑m  ( 1 ... 𝑤 ) ) ( 〈 𝑚 ,  𝐾 〉  PolyAP  𝑔  ∨  ( 𝐾  +  1 )  MonoAP  𝑔 ) )  ∧  ( 𝑣  ∈  ℕ  ∧  ∀ 𝑓  ∈  ( ( 𝑅  ↑m  ( 1 ... 𝑤 ) )  ↑m  ( 1 ... 𝑣 ) ) 𝐾  MonoAP  𝑓 ) )  ∧  ℎ  ∈  ( 𝑅  ↑m  ( 1 ... ( 𝑤  ·  ( 2  ·  𝑣 ) ) ) ) )  →  ∀ 𝑘  ∈  ( 𝑅  ↑m  ( 1 ... 𝑤 ) ) ( 〈 𝑚 ,  𝐾 〉  PolyAP  𝑘  ∨  ( 𝐾  +  1 )  MonoAP  𝑘 ) ) | 
						
							| 147 |  | simp2rl | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  ( ( 𝑤  ∈  ℕ  ∧  ∀ 𝑔  ∈  ( 𝑅  ↑m  ( 1 ... 𝑤 ) ) ( 〈 𝑚 ,  𝐾 〉  PolyAP  𝑔  ∨  ( 𝐾  +  1 )  MonoAP  𝑔 ) )  ∧  ( 𝑣  ∈  ℕ  ∧  ∀ 𝑓  ∈  ( ( 𝑅  ↑m  ( 1 ... 𝑤 ) )  ↑m  ( 1 ... 𝑣 ) ) 𝐾  MonoAP  𝑓 ) )  ∧  ℎ  ∈  ( 𝑅  ↑m  ( 1 ... ( 𝑤  ·  ( 2  ·  𝑣 ) ) ) ) )  →  𝑣  ∈  ℕ ) | 
						
							| 148 |  | simp2rr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  ( ( 𝑤  ∈  ℕ  ∧  ∀ 𝑔  ∈  ( 𝑅  ↑m  ( 1 ... 𝑤 ) ) ( 〈 𝑚 ,  𝐾 〉  PolyAP  𝑔  ∨  ( 𝐾  +  1 )  MonoAP  𝑔 ) )  ∧  ( 𝑣  ∈  ℕ  ∧  ∀ 𝑓  ∈  ( ( 𝑅  ↑m  ( 1 ... 𝑤 ) )  ↑m  ( 1 ... 𝑣 ) ) 𝐾  MonoAP  𝑓 ) )  ∧  ℎ  ∈  ( 𝑅  ↑m  ( 1 ... ( 𝑤  ·  ( 2  ·  𝑣 ) ) ) ) )  →  ∀ 𝑓  ∈  ( ( 𝑅  ↑m  ( 1 ... 𝑤 ) )  ↑m  ( 1 ... 𝑣 ) ) 𝐾  MonoAP  𝑓 ) | 
						
							| 149 |  | simp3 | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  ( ( 𝑤  ∈  ℕ  ∧  ∀ 𝑔  ∈  ( 𝑅  ↑m  ( 1 ... 𝑤 ) ) ( 〈 𝑚 ,  𝐾 〉  PolyAP  𝑔  ∨  ( 𝐾  +  1 )  MonoAP  𝑔 ) )  ∧  ( 𝑣  ∈  ℕ  ∧  ∀ 𝑓  ∈  ( ( 𝑅  ↑m  ( 1 ... 𝑤 ) )  ↑m  ( 1 ... 𝑣 ) ) 𝐾  MonoAP  𝑓 ) )  ∧  ℎ  ∈  ( 𝑅  ↑m  ( 1 ... ( 𝑤  ·  ( 2  ·  𝑣 ) ) ) ) )  →  ℎ  ∈  ( 𝑅  ↑m  ( 1 ... ( 𝑤  ·  ( 2  ·  𝑣 ) ) ) ) ) | 
						
							| 150 |  | ovex | ⊢ ( 1 ... ( 𝑤  ·  ( 2  ·  𝑣 ) ) )  ∈  V | 
						
							| 151 |  | elmapg | ⊢ ( ( 𝑅  ∈  Fin  ∧  ( 1 ... ( 𝑤  ·  ( 2  ·  𝑣 ) ) )  ∈  V )  →  ( ℎ  ∈  ( 𝑅  ↑m  ( 1 ... ( 𝑤  ·  ( 2  ·  𝑣 ) ) ) )  ↔  ℎ : ( 1 ... ( 𝑤  ·  ( 2  ·  𝑣 ) ) ) ⟶ 𝑅 ) ) | 
						
							| 152 | 136 150 151 | sylancl | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  ( ( 𝑤  ∈  ℕ  ∧  ∀ 𝑔  ∈  ( 𝑅  ↑m  ( 1 ... 𝑤 ) ) ( 〈 𝑚 ,  𝐾 〉  PolyAP  𝑔  ∨  ( 𝐾  +  1 )  MonoAP  𝑔 ) )  ∧  ( 𝑣  ∈  ℕ  ∧  ∀ 𝑓  ∈  ( ( 𝑅  ↑m  ( 1 ... 𝑤 ) )  ↑m  ( 1 ... 𝑣 ) ) 𝐾  MonoAP  𝑓 ) )  ∧  ℎ  ∈  ( 𝑅  ↑m  ( 1 ... ( 𝑤  ·  ( 2  ·  𝑣 ) ) ) ) )  →  ( ℎ  ∈  ( 𝑅  ↑m  ( 1 ... ( 𝑤  ·  ( 2  ·  𝑣 ) ) ) )  ↔  ℎ : ( 1 ... ( 𝑤  ·  ( 2  ·  𝑣 ) ) ) ⟶ 𝑅 ) ) | 
						
							| 153 | 149 152 | mpbid | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  ( ( 𝑤  ∈  ℕ  ∧  ∀ 𝑔  ∈  ( 𝑅  ↑m  ( 1 ... 𝑤 ) ) ( 〈 𝑚 ,  𝐾 〉  PolyAP  𝑔  ∨  ( 𝐾  +  1 )  MonoAP  𝑔 ) )  ∧  ( 𝑣  ∈  ℕ  ∧  ∀ 𝑓  ∈  ( ( 𝑅  ↑m  ( 1 ... 𝑤 ) )  ↑m  ( 1 ... 𝑣 ) ) 𝐾  MonoAP  𝑓 ) )  ∧  ℎ  ∈  ( 𝑅  ↑m  ( 1 ... ( 𝑤  ·  ( 2  ·  𝑣 ) ) ) ) )  →  ℎ : ( 1 ... ( 𝑤  ·  ( 2  ·  𝑣 ) ) ) ⟶ 𝑅 ) | 
						
							| 154 |  | fvoveq1 | ⊢ ( 𝑦  =  𝑢  →  ( ℎ ‘ ( 𝑦  +  ( 𝑤  ·  ( ( 𝑥  −  1 )  +  𝑣 ) ) ) )  =  ( ℎ ‘ ( 𝑢  +  ( 𝑤  ·  ( ( 𝑥  −  1 )  +  𝑣 ) ) ) ) ) | 
						
							| 155 | 154 | cbvmptv | ⊢ ( 𝑦  ∈  ( 1 ... 𝑤 )  ↦  ( ℎ ‘ ( 𝑦  +  ( 𝑤  ·  ( ( 𝑥  −  1 )  +  𝑣 ) ) ) ) )  =  ( 𝑢  ∈  ( 1 ... 𝑤 )  ↦  ( ℎ ‘ ( 𝑢  +  ( 𝑤  ·  ( ( 𝑥  −  1 )  +  𝑣 ) ) ) ) ) | 
						
							| 156 |  | oveq1 | ⊢ ( 𝑥  =  𝑧  →  ( 𝑥  −  1 )  =  ( 𝑧  −  1 ) ) | 
						
							| 157 | 156 | oveq1d | ⊢ ( 𝑥  =  𝑧  →  ( ( 𝑥  −  1 )  +  𝑣 )  =  ( ( 𝑧  −  1 )  +  𝑣 ) ) | 
						
							| 158 | 157 | oveq2d | ⊢ ( 𝑥  =  𝑧  →  ( 𝑤  ·  ( ( 𝑥  −  1 )  +  𝑣 ) )  =  ( 𝑤  ·  ( ( 𝑧  −  1 )  +  𝑣 ) ) ) | 
						
							| 159 | 158 | oveq2d | ⊢ ( 𝑥  =  𝑧  →  ( 𝑢  +  ( 𝑤  ·  ( ( 𝑥  −  1 )  +  𝑣 ) ) )  =  ( 𝑢  +  ( 𝑤  ·  ( ( 𝑧  −  1 )  +  𝑣 ) ) ) ) | 
						
							| 160 | 159 | fveq2d | ⊢ ( 𝑥  =  𝑧  →  ( ℎ ‘ ( 𝑢  +  ( 𝑤  ·  ( ( 𝑥  −  1 )  +  𝑣 ) ) ) )  =  ( ℎ ‘ ( 𝑢  +  ( 𝑤  ·  ( ( 𝑧  −  1 )  +  𝑣 ) ) ) ) ) | 
						
							| 161 | 160 | mpteq2dv | ⊢ ( 𝑥  =  𝑧  →  ( 𝑢  ∈  ( 1 ... 𝑤 )  ↦  ( ℎ ‘ ( 𝑢  +  ( 𝑤  ·  ( ( 𝑥  −  1 )  +  𝑣 ) ) ) ) )  =  ( 𝑢  ∈  ( 1 ... 𝑤 )  ↦  ( ℎ ‘ ( 𝑢  +  ( 𝑤  ·  ( ( 𝑧  −  1 )  +  𝑣 ) ) ) ) ) ) | 
						
							| 162 | 155 161 | eqtrid | ⊢ ( 𝑥  =  𝑧  →  ( 𝑦  ∈  ( 1 ... 𝑤 )  ↦  ( ℎ ‘ ( 𝑦  +  ( 𝑤  ·  ( ( 𝑥  −  1 )  +  𝑣 ) ) ) ) )  =  ( 𝑢  ∈  ( 1 ... 𝑤 )  ↦  ( ℎ ‘ ( 𝑢  +  ( 𝑤  ·  ( ( 𝑧  −  1 )  +  𝑣 ) ) ) ) ) ) | 
						
							| 163 | 162 | cbvmptv | ⊢ ( 𝑥  ∈  ( 1 ... 𝑣 )  ↦  ( 𝑦  ∈  ( 1 ... 𝑤 )  ↦  ( ℎ ‘ ( 𝑦  +  ( 𝑤  ·  ( ( 𝑥  −  1 )  +  𝑣 ) ) ) ) ) )  =  ( 𝑧  ∈  ( 1 ... 𝑣 )  ↦  ( 𝑢  ∈  ( 1 ... 𝑤 )  ↦  ( ℎ ‘ ( 𝑢  +  ( 𝑤  ·  ( ( 𝑧  −  1 )  +  𝑣 ) ) ) ) ) ) | 
						
							| 164 | 136 137 138 139 140 146 147 148 153 163 | vdwlem9 | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  ( ( 𝑤  ∈  ℕ  ∧  ∀ 𝑔  ∈  ( 𝑅  ↑m  ( 1 ... 𝑤 ) ) ( 〈 𝑚 ,  𝐾 〉  PolyAP  𝑔  ∨  ( 𝐾  +  1 )  MonoAP  𝑔 ) )  ∧  ( 𝑣  ∈  ℕ  ∧  ∀ 𝑓  ∈  ( ( 𝑅  ↑m  ( 1 ... 𝑤 ) )  ↑m  ( 1 ... 𝑣 ) ) 𝐾  MonoAP  𝑓 ) )  ∧  ℎ  ∈  ( 𝑅  ↑m  ( 1 ... ( 𝑤  ·  ( 2  ·  𝑣 ) ) ) ) )  →  ( 〈 ( 𝑚  +  1 ) ,  𝐾 〉  PolyAP  ℎ  ∨  ( 𝐾  +  1 )  MonoAP  ℎ ) ) | 
						
							| 165 | 164 | 3expia | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  ( ( 𝑤  ∈  ℕ  ∧  ∀ 𝑔  ∈  ( 𝑅  ↑m  ( 1 ... 𝑤 ) ) ( 〈 𝑚 ,  𝐾 〉  PolyAP  𝑔  ∨  ( 𝐾  +  1 )  MonoAP  𝑔 ) )  ∧  ( 𝑣  ∈  ℕ  ∧  ∀ 𝑓  ∈  ( ( 𝑅  ↑m  ( 1 ... 𝑤 ) )  ↑m  ( 1 ... 𝑣 ) ) 𝐾  MonoAP  𝑓 ) ) )  →  ( ℎ  ∈  ( 𝑅  ↑m  ( 1 ... ( 𝑤  ·  ( 2  ·  𝑣 ) ) ) )  →  ( 〈 ( 𝑚  +  1 ) ,  𝐾 〉  PolyAP  ℎ  ∨  ( 𝐾  +  1 )  MonoAP  ℎ ) ) ) | 
						
							| 166 | 165 | ralrimiv | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  ( ( 𝑤  ∈  ℕ  ∧  ∀ 𝑔  ∈  ( 𝑅  ↑m  ( 1 ... 𝑤 ) ) ( 〈 𝑚 ,  𝐾 〉  PolyAP  𝑔  ∨  ( 𝐾  +  1 )  MonoAP  𝑔 ) )  ∧  ( 𝑣  ∈  ℕ  ∧  ∀ 𝑓  ∈  ( ( 𝑅  ↑m  ( 1 ... 𝑤 ) )  ↑m  ( 1 ... 𝑣 ) ) 𝐾  MonoAP  𝑓 ) ) )  →  ∀ ℎ  ∈  ( 𝑅  ↑m  ( 1 ... ( 𝑤  ·  ( 2  ·  𝑣 ) ) ) ) ( 〈 ( 𝑚  +  1 ) ,  𝐾 〉  PolyAP  ℎ  ∨  ( 𝐾  +  1 )  MonoAP  ℎ ) ) | 
						
							| 167 |  | oveq2 | ⊢ ( 𝑛  =  ( 𝑤  ·  ( 2  ·  𝑣 ) )  →  ( 1 ... 𝑛 )  =  ( 1 ... ( 𝑤  ·  ( 2  ·  𝑣 ) ) ) ) | 
						
							| 168 | 167 | oveq2d | ⊢ ( 𝑛  =  ( 𝑤  ·  ( 2  ·  𝑣 ) )  →  ( 𝑅  ↑m  ( 1 ... 𝑛 ) )  =  ( 𝑅  ↑m  ( 1 ... ( 𝑤  ·  ( 2  ·  𝑣 ) ) ) ) ) | 
						
							| 169 | 168 | raleqdv | ⊢ ( 𝑛  =  ( 𝑤  ·  ( 2  ·  𝑣 ) )  →  ( ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 1 ... 𝑛 ) ) ( 〈 ( 𝑚  +  1 ) ,  𝐾 〉  PolyAP  𝑓  ∨  ( 𝐾  +  1 )  MonoAP  𝑓 )  ↔  ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 1 ... ( 𝑤  ·  ( 2  ·  𝑣 ) ) ) ) ( 〈 ( 𝑚  +  1 ) ,  𝐾 〉  PolyAP  𝑓  ∨  ( 𝐾  +  1 )  MonoAP  𝑓 ) ) ) | 
						
							| 170 |  | breq2 | ⊢ ( 𝑓  =  ℎ  →  ( 〈 ( 𝑚  +  1 ) ,  𝐾 〉  PolyAP  𝑓  ↔  〈 ( 𝑚  +  1 ) ,  𝐾 〉  PolyAP  ℎ ) ) | 
						
							| 171 |  | breq2 | ⊢ ( 𝑓  =  ℎ  →  ( ( 𝐾  +  1 )  MonoAP  𝑓  ↔  ( 𝐾  +  1 )  MonoAP  ℎ ) ) | 
						
							| 172 | 170 171 | orbi12d | ⊢ ( 𝑓  =  ℎ  →  ( ( 〈 ( 𝑚  +  1 ) ,  𝐾 〉  PolyAP  𝑓  ∨  ( 𝐾  +  1 )  MonoAP  𝑓 )  ↔  ( 〈 ( 𝑚  +  1 ) ,  𝐾 〉  PolyAP  ℎ  ∨  ( 𝐾  +  1 )  MonoAP  ℎ ) ) ) | 
						
							| 173 | 172 | cbvralvw | ⊢ ( ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 1 ... ( 𝑤  ·  ( 2  ·  𝑣 ) ) ) ) ( 〈 ( 𝑚  +  1 ) ,  𝐾 〉  PolyAP  𝑓  ∨  ( 𝐾  +  1 )  MonoAP  𝑓 )  ↔  ∀ ℎ  ∈  ( 𝑅  ↑m  ( 1 ... ( 𝑤  ·  ( 2  ·  𝑣 ) ) ) ) ( 〈 ( 𝑚  +  1 ) ,  𝐾 〉  PolyAP  ℎ  ∨  ( 𝐾  +  1 )  MonoAP  ℎ ) ) | 
						
							| 174 | 169 173 | bitrdi | ⊢ ( 𝑛  =  ( 𝑤  ·  ( 2  ·  𝑣 ) )  →  ( ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 1 ... 𝑛 ) ) ( 〈 ( 𝑚  +  1 ) ,  𝐾 〉  PolyAP  𝑓  ∨  ( 𝐾  +  1 )  MonoAP  𝑓 )  ↔  ∀ ℎ  ∈  ( 𝑅  ↑m  ( 1 ... ( 𝑤  ·  ( 2  ·  𝑣 ) ) ) ) ( 〈 ( 𝑚  +  1 ) ,  𝐾 〉  PolyAP  ℎ  ∨  ( 𝐾  +  1 )  MonoAP  ℎ ) ) ) | 
						
							| 175 | 174 | rspcev | ⊢ ( ( ( 𝑤  ·  ( 2  ·  𝑣 ) )  ∈  ℕ  ∧  ∀ ℎ  ∈  ( 𝑅  ↑m  ( 1 ... ( 𝑤  ·  ( 2  ·  𝑣 ) ) ) ) ( 〈 ( 𝑚  +  1 ) ,  𝐾 〉  PolyAP  ℎ  ∨  ( 𝐾  +  1 )  MonoAP  ℎ ) )  →  ∃ 𝑛  ∈  ℕ ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 1 ... 𝑛 ) ) ( 〈 ( 𝑚  +  1 ) ,  𝐾 〉  PolyAP  𝑓  ∨  ( 𝐾  +  1 )  MonoAP  𝑓 ) ) | 
						
							| 176 | 134 166 175 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  ( ( 𝑤  ∈  ℕ  ∧  ∀ 𝑔  ∈  ( 𝑅  ↑m  ( 1 ... 𝑤 ) ) ( 〈 𝑚 ,  𝐾 〉  PolyAP  𝑔  ∨  ( 𝐾  +  1 )  MonoAP  𝑔 ) )  ∧  ( 𝑣  ∈  ℕ  ∧  ∀ 𝑓  ∈  ( ( 𝑅  ↑m  ( 1 ... 𝑤 ) )  ↑m  ( 1 ... 𝑣 ) ) 𝐾  MonoAP  𝑓 ) ) )  →  ∃ 𝑛  ∈  ℕ ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 1 ... 𝑛 ) ) ( 〈 ( 𝑚  +  1 ) ,  𝐾 〉  PolyAP  𝑓  ∨  ( 𝐾  +  1 )  MonoAP  𝑓 ) ) | 
						
							| 177 | 176 | anassrs | ⊢ ( ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  ( 𝑤  ∈  ℕ  ∧  ∀ 𝑔  ∈  ( 𝑅  ↑m  ( 1 ... 𝑤 ) ) ( 〈 𝑚 ,  𝐾 〉  PolyAP  𝑔  ∨  ( 𝐾  +  1 )  MonoAP  𝑔 ) ) )  ∧  ( 𝑣  ∈  ℕ  ∧  ∀ 𝑓  ∈  ( ( 𝑅  ↑m  ( 1 ... 𝑤 ) )  ↑m  ( 1 ... 𝑣 ) ) 𝐾  MonoAP  𝑓 ) )  →  ∃ 𝑛  ∈  ℕ ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 1 ... 𝑛 ) ) ( 〈 ( 𝑚  +  1 ) ,  𝐾 〉  PolyAP  𝑓  ∨  ( 𝐾  +  1 )  MonoAP  𝑓 ) ) | 
						
							| 178 | 127 177 | rexlimddv | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  ( 𝑤  ∈  ℕ  ∧  ∀ 𝑔  ∈  ( 𝑅  ↑m  ( 1 ... 𝑤 ) ) ( 〈 𝑚 ,  𝐾 〉  PolyAP  𝑔  ∨  ( 𝐾  +  1 )  MonoAP  𝑔 ) ) )  →  ∃ 𝑛  ∈  ℕ ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 1 ... 𝑛 ) ) ( 〈 ( 𝑚  +  1 ) ,  𝐾 〉  PolyAP  𝑓  ∨  ( 𝐾  +  1 )  MonoAP  𝑓 ) ) | 
						
							| 179 | 178 | rexlimdvaa | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ∃ 𝑤  ∈  ℕ ∀ 𝑔  ∈  ( 𝑅  ↑m  ( 1 ... 𝑤 ) ) ( 〈 𝑚 ,  𝐾 〉  PolyAP  𝑔  ∨  ( 𝐾  +  1 )  MonoAP  𝑔 )  →  ∃ 𝑛  ∈  ℕ ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 1 ... 𝑛 ) ) ( 〈 ( 𝑚  +  1 ) ,  𝐾 〉  PolyAP  𝑓  ∨  ( 𝐾  +  1 )  MonoAP  𝑓 ) ) ) | 
						
							| 180 | 113 179 | biimtrid | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ∃ 𝑛  ∈  ℕ ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 1 ... 𝑛 ) ) ( 〈 𝑚 ,  𝐾 〉  PolyAP  𝑓  ∨  ( 𝐾  +  1 )  MonoAP  𝑓 )  →  ∃ 𝑛  ∈  ℕ ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 1 ... 𝑛 ) ) ( 〈 ( 𝑚  +  1 ) ,  𝐾 〉  PolyAP  𝑓  ∨  ( 𝐾  +  1 )  MonoAP  𝑓 ) ) ) | 
						
							| 181 | 180 | expcom | ⊢ ( 𝑚  ∈  ℕ  →  ( 𝜑  →  ( ∃ 𝑛  ∈  ℕ ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 1 ... 𝑛 ) ) ( 〈 𝑚 ,  𝐾 〉  PolyAP  𝑓  ∨  ( 𝐾  +  1 )  MonoAP  𝑓 )  →  ∃ 𝑛  ∈  ℕ ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 1 ... 𝑛 ) ) ( 〈 ( 𝑚  +  1 ) ,  𝐾 〉  PolyAP  𝑓  ∨  ( 𝐾  +  1 )  MonoAP  𝑓 ) ) ) ) | 
						
							| 182 | 181 | a2d | ⊢ ( 𝑚  ∈  ℕ  →  ( ( 𝜑  →  ∃ 𝑛  ∈  ℕ ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 1 ... 𝑛 ) ) ( 〈 𝑚 ,  𝐾 〉  PolyAP  𝑓  ∨  ( 𝐾  +  1 )  MonoAP  𝑓 ) )  →  ( 𝜑  →  ∃ 𝑛  ∈  ℕ ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 1 ... 𝑛 ) ) ( 〈 ( 𝑚  +  1 ) ,  𝐾 〉  PolyAP  𝑓  ∨  ( 𝐾  +  1 )  MonoAP  𝑓 ) ) ) ) | 
						
							| 183 | 9 14 19 24 106 182 | nnind | ⊢ ( 𝑀  ∈  ℕ  →  ( 𝜑  →  ∃ 𝑛  ∈  ℕ ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 1 ... 𝑛 ) ) ( 〈 𝑀 ,  𝐾 〉  PolyAP  𝑓  ∨  ( 𝐾  +  1 )  MonoAP  𝑓 ) ) ) | 
						
							| 184 | 4 183 | mpcom | ⊢ ( 𝜑  →  ∃ 𝑛  ∈  ℕ ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 1 ... 𝑛 ) ) ( 〈 𝑀 ,  𝐾 〉  PolyAP  𝑓  ∨  ( 𝐾  +  1 )  MonoAP  𝑓 ) ) |