| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vdw.r |
⊢ ( 𝜑 → 𝑅 ∈ Fin ) |
| 2 |
|
vdwlem9.k |
⊢ ( 𝜑 → 𝐾 ∈ ( ℤ≥ ‘ 2 ) ) |
| 3 |
|
vdwlem9.s |
⊢ ( 𝜑 → ∀ 𝑠 ∈ Fin ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑠 ↑m ( 1 ... 𝑛 ) ) 𝐾 MonoAP 𝑓 ) |
| 4 |
|
vdwlem10.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
| 5 |
|
opeq1 |
⊢ ( 𝑥 = 1 → 〈 𝑥 , 𝐾 〉 = 〈 1 , 𝐾 〉 ) |
| 6 |
5
|
breq1d |
⊢ ( 𝑥 = 1 → ( 〈 𝑥 , 𝐾 〉 PolyAP 𝑓 ↔ 〈 1 , 𝐾 〉 PolyAP 𝑓 ) ) |
| 7 |
6
|
orbi1d |
⊢ ( 𝑥 = 1 → ( ( 〈 𝑥 , 𝐾 〉 PolyAP 𝑓 ∨ ( 𝐾 + 1 ) MonoAP 𝑓 ) ↔ ( 〈 1 , 𝐾 〉 PolyAP 𝑓 ∨ ( 𝐾 + 1 ) MonoAP 𝑓 ) ) ) |
| 8 |
7
|
rexralbidv |
⊢ ( 𝑥 = 1 → ( ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 𝑛 ) ) ( 〈 𝑥 , 𝐾 〉 PolyAP 𝑓 ∨ ( 𝐾 + 1 ) MonoAP 𝑓 ) ↔ ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 𝑛 ) ) ( 〈 1 , 𝐾 〉 PolyAP 𝑓 ∨ ( 𝐾 + 1 ) MonoAP 𝑓 ) ) ) |
| 9 |
8
|
imbi2d |
⊢ ( 𝑥 = 1 → ( ( 𝜑 → ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 𝑛 ) ) ( 〈 𝑥 , 𝐾 〉 PolyAP 𝑓 ∨ ( 𝐾 + 1 ) MonoAP 𝑓 ) ) ↔ ( 𝜑 → ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 𝑛 ) ) ( 〈 1 , 𝐾 〉 PolyAP 𝑓 ∨ ( 𝐾 + 1 ) MonoAP 𝑓 ) ) ) ) |
| 10 |
|
opeq1 |
⊢ ( 𝑥 = 𝑚 → 〈 𝑥 , 𝐾 〉 = 〈 𝑚 , 𝐾 〉 ) |
| 11 |
10
|
breq1d |
⊢ ( 𝑥 = 𝑚 → ( 〈 𝑥 , 𝐾 〉 PolyAP 𝑓 ↔ 〈 𝑚 , 𝐾 〉 PolyAP 𝑓 ) ) |
| 12 |
11
|
orbi1d |
⊢ ( 𝑥 = 𝑚 → ( ( 〈 𝑥 , 𝐾 〉 PolyAP 𝑓 ∨ ( 𝐾 + 1 ) MonoAP 𝑓 ) ↔ ( 〈 𝑚 , 𝐾 〉 PolyAP 𝑓 ∨ ( 𝐾 + 1 ) MonoAP 𝑓 ) ) ) |
| 13 |
12
|
rexralbidv |
⊢ ( 𝑥 = 𝑚 → ( ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 𝑛 ) ) ( 〈 𝑥 , 𝐾 〉 PolyAP 𝑓 ∨ ( 𝐾 + 1 ) MonoAP 𝑓 ) ↔ ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 𝑛 ) ) ( 〈 𝑚 , 𝐾 〉 PolyAP 𝑓 ∨ ( 𝐾 + 1 ) MonoAP 𝑓 ) ) ) |
| 14 |
13
|
imbi2d |
⊢ ( 𝑥 = 𝑚 → ( ( 𝜑 → ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 𝑛 ) ) ( 〈 𝑥 , 𝐾 〉 PolyAP 𝑓 ∨ ( 𝐾 + 1 ) MonoAP 𝑓 ) ) ↔ ( 𝜑 → ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 𝑛 ) ) ( 〈 𝑚 , 𝐾 〉 PolyAP 𝑓 ∨ ( 𝐾 + 1 ) MonoAP 𝑓 ) ) ) ) |
| 15 |
|
opeq1 |
⊢ ( 𝑥 = ( 𝑚 + 1 ) → 〈 𝑥 , 𝐾 〉 = 〈 ( 𝑚 + 1 ) , 𝐾 〉 ) |
| 16 |
15
|
breq1d |
⊢ ( 𝑥 = ( 𝑚 + 1 ) → ( 〈 𝑥 , 𝐾 〉 PolyAP 𝑓 ↔ 〈 ( 𝑚 + 1 ) , 𝐾 〉 PolyAP 𝑓 ) ) |
| 17 |
16
|
orbi1d |
⊢ ( 𝑥 = ( 𝑚 + 1 ) → ( ( 〈 𝑥 , 𝐾 〉 PolyAP 𝑓 ∨ ( 𝐾 + 1 ) MonoAP 𝑓 ) ↔ ( 〈 ( 𝑚 + 1 ) , 𝐾 〉 PolyAP 𝑓 ∨ ( 𝐾 + 1 ) MonoAP 𝑓 ) ) ) |
| 18 |
17
|
rexralbidv |
⊢ ( 𝑥 = ( 𝑚 + 1 ) → ( ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 𝑛 ) ) ( 〈 𝑥 , 𝐾 〉 PolyAP 𝑓 ∨ ( 𝐾 + 1 ) MonoAP 𝑓 ) ↔ ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 𝑛 ) ) ( 〈 ( 𝑚 + 1 ) , 𝐾 〉 PolyAP 𝑓 ∨ ( 𝐾 + 1 ) MonoAP 𝑓 ) ) ) |
| 19 |
18
|
imbi2d |
⊢ ( 𝑥 = ( 𝑚 + 1 ) → ( ( 𝜑 → ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 𝑛 ) ) ( 〈 𝑥 , 𝐾 〉 PolyAP 𝑓 ∨ ( 𝐾 + 1 ) MonoAP 𝑓 ) ) ↔ ( 𝜑 → ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 𝑛 ) ) ( 〈 ( 𝑚 + 1 ) , 𝐾 〉 PolyAP 𝑓 ∨ ( 𝐾 + 1 ) MonoAP 𝑓 ) ) ) ) |
| 20 |
|
opeq1 |
⊢ ( 𝑥 = 𝑀 → 〈 𝑥 , 𝐾 〉 = 〈 𝑀 , 𝐾 〉 ) |
| 21 |
20
|
breq1d |
⊢ ( 𝑥 = 𝑀 → ( 〈 𝑥 , 𝐾 〉 PolyAP 𝑓 ↔ 〈 𝑀 , 𝐾 〉 PolyAP 𝑓 ) ) |
| 22 |
21
|
orbi1d |
⊢ ( 𝑥 = 𝑀 → ( ( 〈 𝑥 , 𝐾 〉 PolyAP 𝑓 ∨ ( 𝐾 + 1 ) MonoAP 𝑓 ) ↔ ( 〈 𝑀 , 𝐾 〉 PolyAP 𝑓 ∨ ( 𝐾 + 1 ) MonoAP 𝑓 ) ) ) |
| 23 |
22
|
rexralbidv |
⊢ ( 𝑥 = 𝑀 → ( ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 𝑛 ) ) ( 〈 𝑥 , 𝐾 〉 PolyAP 𝑓 ∨ ( 𝐾 + 1 ) MonoAP 𝑓 ) ↔ ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 𝑛 ) ) ( 〈 𝑀 , 𝐾 〉 PolyAP 𝑓 ∨ ( 𝐾 + 1 ) MonoAP 𝑓 ) ) ) |
| 24 |
23
|
imbi2d |
⊢ ( 𝑥 = 𝑀 → ( ( 𝜑 → ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 𝑛 ) ) ( 〈 𝑥 , 𝐾 〉 PolyAP 𝑓 ∨ ( 𝐾 + 1 ) MonoAP 𝑓 ) ) ↔ ( 𝜑 → ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 𝑛 ) ) ( 〈 𝑀 , 𝐾 〉 PolyAP 𝑓 ∨ ( 𝐾 + 1 ) MonoAP 𝑓 ) ) ) ) |
| 25 |
|
oveq1 |
⊢ ( 𝑠 = 𝑅 → ( 𝑠 ↑m ( 1 ... 𝑛 ) ) = ( 𝑅 ↑m ( 1 ... 𝑛 ) ) ) |
| 26 |
25
|
raleqdv |
⊢ ( 𝑠 = 𝑅 → ( ∀ 𝑓 ∈ ( 𝑠 ↑m ( 1 ... 𝑛 ) ) 𝐾 MonoAP 𝑓 ↔ ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 𝑛 ) ) 𝐾 MonoAP 𝑓 ) ) |
| 27 |
26
|
rexbidv |
⊢ ( 𝑠 = 𝑅 → ( ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑠 ↑m ( 1 ... 𝑛 ) ) 𝐾 MonoAP 𝑓 ↔ ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 𝑛 ) ) 𝐾 MonoAP 𝑓 ) ) |
| 28 |
27 3 1
|
rspcdva |
⊢ ( 𝜑 → ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 𝑛 ) ) 𝐾 MonoAP 𝑓 ) |
| 29 |
|
oveq2 |
⊢ ( 𝑛 = 𝑤 → ( 1 ... 𝑛 ) = ( 1 ... 𝑤 ) ) |
| 30 |
29
|
oveq2d |
⊢ ( 𝑛 = 𝑤 → ( 𝑅 ↑m ( 1 ... 𝑛 ) ) = ( 𝑅 ↑m ( 1 ... 𝑤 ) ) ) |
| 31 |
30
|
raleqdv |
⊢ ( 𝑛 = 𝑤 → ( ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 𝑛 ) ) 𝐾 MonoAP 𝑓 ↔ ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 𝑤 ) ) 𝐾 MonoAP 𝑓 ) ) |
| 32 |
31
|
cbvrexvw |
⊢ ( ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 𝑛 ) ) 𝐾 MonoAP 𝑓 ↔ ∃ 𝑤 ∈ ℕ ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 𝑤 ) ) 𝐾 MonoAP 𝑓 ) |
| 33 |
28 32
|
sylib |
⊢ ( 𝜑 → ∃ 𝑤 ∈ ℕ ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 𝑤 ) ) 𝐾 MonoAP 𝑓 ) |
| 34 |
|
breq2 |
⊢ ( 𝑓 = 𝑔 → ( 𝐾 MonoAP 𝑓 ↔ 𝐾 MonoAP 𝑔 ) ) |
| 35 |
34
|
cbvralvw |
⊢ ( ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 𝑤 ) ) 𝐾 MonoAP 𝑓 ↔ ∀ 𝑔 ∈ ( 𝑅 ↑m ( 1 ... 𝑤 ) ) 𝐾 MonoAP 𝑔 ) |
| 36 |
|
2nn |
⊢ 2 ∈ ℕ |
| 37 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℕ ) → 𝑤 ∈ ℕ ) |
| 38 |
|
nnmulcl |
⊢ ( ( 2 ∈ ℕ ∧ 𝑤 ∈ ℕ ) → ( 2 · 𝑤 ) ∈ ℕ ) |
| 39 |
36 37 38
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℕ ) → ( 2 · 𝑤 ) ∈ ℕ ) |
| 40 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℕ ) → 𝑅 ∈ Fin ) |
| 41 |
|
ovex |
⊢ ( 1 ... ( 2 · 𝑤 ) ) ∈ V |
| 42 |
|
elmapg |
⊢ ( ( 𝑅 ∈ Fin ∧ ( 1 ... ( 2 · 𝑤 ) ) ∈ V ) → ( 𝑓 ∈ ( 𝑅 ↑m ( 1 ... ( 2 · 𝑤 ) ) ) ↔ 𝑓 : ( 1 ... ( 2 · 𝑤 ) ) ⟶ 𝑅 ) ) |
| 43 |
40 41 42
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℕ ) → ( 𝑓 ∈ ( 𝑅 ↑m ( 1 ... ( 2 · 𝑤 ) ) ) ↔ 𝑓 : ( 1 ... ( 2 · 𝑤 ) ) ⟶ 𝑅 ) ) |
| 44 |
43
|
biimpa |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ℕ ) ∧ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... ( 2 · 𝑤 ) ) ) ) → 𝑓 : ( 1 ... ( 2 · 𝑤 ) ) ⟶ 𝑅 ) |
| 45 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℕ ) ∧ 𝑓 : ( 1 ... ( 2 · 𝑤 ) ) ⟶ 𝑅 ) ∧ 𝑦 ∈ ( 1 ... 𝑤 ) ) → 𝑓 : ( 1 ... ( 2 · 𝑤 ) ) ⟶ 𝑅 ) |
| 46 |
|
elfznn |
⊢ ( 𝑦 ∈ ( 1 ... 𝑤 ) → 𝑦 ∈ ℕ ) |
| 47 |
46
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℕ ) ∧ 𝑓 : ( 1 ... ( 2 · 𝑤 ) ) ⟶ 𝑅 ) ∧ 𝑦 ∈ ( 1 ... 𝑤 ) ) → 𝑦 ∈ ℕ ) |
| 48 |
47
|
nnred |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℕ ) ∧ 𝑓 : ( 1 ... ( 2 · 𝑤 ) ) ⟶ 𝑅 ) ∧ 𝑦 ∈ ( 1 ... 𝑤 ) ) → 𝑦 ∈ ℝ ) |
| 49 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℕ ) ∧ 𝑓 : ( 1 ... ( 2 · 𝑤 ) ) ⟶ 𝑅 ) ∧ 𝑦 ∈ ( 1 ... 𝑤 ) ) → 𝑤 ∈ ℕ ) |
| 50 |
49
|
nnred |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℕ ) ∧ 𝑓 : ( 1 ... ( 2 · 𝑤 ) ) ⟶ 𝑅 ) ∧ 𝑦 ∈ ( 1 ... 𝑤 ) ) → 𝑤 ∈ ℝ ) |
| 51 |
|
elfzle2 |
⊢ ( 𝑦 ∈ ( 1 ... 𝑤 ) → 𝑦 ≤ 𝑤 ) |
| 52 |
51
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℕ ) ∧ 𝑓 : ( 1 ... ( 2 · 𝑤 ) ) ⟶ 𝑅 ) ∧ 𝑦 ∈ ( 1 ... 𝑤 ) ) → 𝑦 ≤ 𝑤 ) |
| 53 |
48 50 50 52
|
leadd1dd |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℕ ) ∧ 𝑓 : ( 1 ... ( 2 · 𝑤 ) ) ⟶ 𝑅 ) ∧ 𝑦 ∈ ( 1 ... 𝑤 ) ) → ( 𝑦 + 𝑤 ) ≤ ( 𝑤 + 𝑤 ) ) |
| 54 |
49
|
nncnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℕ ) ∧ 𝑓 : ( 1 ... ( 2 · 𝑤 ) ) ⟶ 𝑅 ) ∧ 𝑦 ∈ ( 1 ... 𝑤 ) ) → 𝑤 ∈ ℂ ) |
| 55 |
54
|
2timesd |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℕ ) ∧ 𝑓 : ( 1 ... ( 2 · 𝑤 ) ) ⟶ 𝑅 ) ∧ 𝑦 ∈ ( 1 ... 𝑤 ) ) → ( 2 · 𝑤 ) = ( 𝑤 + 𝑤 ) ) |
| 56 |
53 55
|
breqtrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℕ ) ∧ 𝑓 : ( 1 ... ( 2 · 𝑤 ) ) ⟶ 𝑅 ) ∧ 𝑦 ∈ ( 1 ... 𝑤 ) ) → ( 𝑦 + 𝑤 ) ≤ ( 2 · 𝑤 ) ) |
| 57 |
47 49
|
nnaddcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℕ ) ∧ 𝑓 : ( 1 ... ( 2 · 𝑤 ) ) ⟶ 𝑅 ) ∧ 𝑦 ∈ ( 1 ... 𝑤 ) ) → ( 𝑦 + 𝑤 ) ∈ ℕ ) |
| 58 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 59 |
57 58
|
eleqtrdi |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℕ ) ∧ 𝑓 : ( 1 ... ( 2 · 𝑤 ) ) ⟶ 𝑅 ) ∧ 𝑦 ∈ ( 1 ... 𝑤 ) ) → ( 𝑦 + 𝑤 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 60 |
39
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℕ ) ∧ 𝑓 : ( 1 ... ( 2 · 𝑤 ) ) ⟶ 𝑅 ) ∧ 𝑦 ∈ ( 1 ... 𝑤 ) ) → ( 2 · 𝑤 ) ∈ ℕ ) |
| 61 |
60
|
nnzd |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℕ ) ∧ 𝑓 : ( 1 ... ( 2 · 𝑤 ) ) ⟶ 𝑅 ) ∧ 𝑦 ∈ ( 1 ... 𝑤 ) ) → ( 2 · 𝑤 ) ∈ ℤ ) |
| 62 |
|
elfz5 |
⊢ ( ( ( 𝑦 + 𝑤 ) ∈ ( ℤ≥ ‘ 1 ) ∧ ( 2 · 𝑤 ) ∈ ℤ ) → ( ( 𝑦 + 𝑤 ) ∈ ( 1 ... ( 2 · 𝑤 ) ) ↔ ( 𝑦 + 𝑤 ) ≤ ( 2 · 𝑤 ) ) ) |
| 63 |
59 61 62
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℕ ) ∧ 𝑓 : ( 1 ... ( 2 · 𝑤 ) ) ⟶ 𝑅 ) ∧ 𝑦 ∈ ( 1 ... 𝑤 ) ) → ( ( 𝑦 + 𝑤 ) ∈ ( 1 ... ( 2 · 𝑤 ) ) ↔ ( 𝑦 + 𝑤 ) ≤ ( 2 · 𝑤 ) ) ) |
| 64 |
56 63
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℕ ) ∧ 𝑓 : ( 1 ... ( 2 · 𝑤 ) ) ⟶ 𝑅 ) ∧ 𝑦 ∈ ( 1 ... 𝑤 ) ) → ( 𝑦 + 𝑤 ) ∈ ( 1 ... ( 2 · 𝑤 ) ) ) |
| 65 |
45 64
|
ffvelcdmd |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℕ ) ∧ 𝑓 : ( 1 ... ( 2 · 𝑤 ) ) ⟶ 𝑅 ) ∧ 𝑦 ∈ ( 1 ... 𝑤 ) ) → ( 𝑓 ‘ ( 𝑦 + 𝑤 ) ) ∈ 𝑅 ) |
| 66 |
|
fvoveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑓 ‘ ( 𝑥 + 𝑤 ) ) = ( 𝑓 ‘ ( 𝑦 + 𝑤 ) ) ) |
| 67 |
66
|
cbvmptv |
⊢ ( 𝑥 ∈ ( 1 ... 𝑤 ) ↦ ( 𝑓 ‘ ( 𝑥 + 𝑤 ) ) ) = ( 𝑦 ∈ ( 1 ... 𝑤 ) ↦ ( 𝑓 ‘ ( 𝑦 + 𝑤 ) ) ) |
| 68 |
65 67
|
fmptd |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ℕ ) ∧ 𝑓 : ( 1 ... ( 2 · 𝑤 ) ) ⟶ 𝑅 ) → ( 𝑥 ∈ ( 1 ... 𝑤 ) ↦ ( 𝑓 ‘ ( 𝑥 + 𝑤 ) ) ) : ( 1 ... 𝑤 ) ⟶ 𝑅 ) |
| 69 |
|
ovex |
⊢ ( 1 ... 𝑤 ) ∈ V |
| 70 |
|
elmapg |
⊢ ( ( 𝑅 ∈ Fin ∧ ( 1 ... 𝑤 ) ∈ V ) → ( ( 𝑥 ∈ ( 1 ... 𝑤 ) ↦ ( 𝑓 ‘ ( 𝑥 + 𝑤 ) ) ) ∈ ( 𝑅 ↑m ( 1 ... 𝑤 ) ) ↔ ( 𝑥 ∈ ( 1 ... 𝑤 ) ↦ ( 𝑓 ‘ ( 𝑥 + 𝑤 ) ) ) : ( 1 ... 𝑤 ) ⟶ 𝑅 ) ) |
| 71 |
40 69 70
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℕ ) → ( ( 𝑥 ∈ ( 1 ... 𝑤 ) ↦ ( 𝑓 ‘ ( 𝑥 + 𝑤 ) ) ) ∈ ( 𝑅 ↑m ( 1 ... 𝑤 ) ) ↔ ( 𝑥 ∈ ( 1 ... 𝑤 ) ↦ ( 𝑓 ‘ ( 𝑥 + 𝑤 ) ) ) : ( 1 ... 𝑤 ) ⟶ 𝑅 ) ) |
| 72 |
71
|
biimpar |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ℕ ) ∧ ( 𝑥 ∈ ( 1 ... 𝑤 ) ↦ ( 𝑓 ‘ ( 𝑥 + 𝑤 ) ) ) : ( 1 ... 𝑤 ) ⟶ 𝑅 ) → ( 𝑥 ∈ ( 1 ... 𝑤 ) ↦ ( 𝑓 ‘ ( 𝑥 + 𝑤 ) ) ) ∈ ( 𝑅 ↑m ( 1 ... 𝑤 ) ) ) |
| 73 |
68 72
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ℕ ) ∧ 𝑓 : ( 1 ... ( 2 · 𝑤 ) ) ⟶ 𝑅 ) → ( 𝑥 ∈ ( 1 ... 𝑤 ) ↦ ( 𝑓 ‘ ( 𝑥 + 𝑤 ) ) ) ∈ ( 𝑅 ↑m ( 1 ... 𝑤 ) ) ) |
| 74 |
|
breq2 |
⊢ ( 𝑔 = ( 𝑥 ∈ ( 1 ... 𝑤 ) ↦ ( 𝑓 ‘ ( 𝑥 + 𝑤 ) ) ) → ( 𝐾 MonoAP 𝑔 ↔ 𝐾 MonoAP ( 𝑥 ∈ ( 1 ... 𝑤 ) ↦ ( 𝑓 ‘ ( 𝑥 + 𝑤 ) ) ) ) ) |
| 75 |
74
|
rspcv |
⊢ ( ( 𝑥 ∈ ( 1 ... 𝑤 ) ↦ ( 𝑓 ‘ ( 𝑥 + 𝑤 ) ) ) ∈ ( 𝑅 ↑m ( 1 ... 𝑤 ) ) → ( ∀ 𝑔 ∈ ( 𝑅 ↑m ( 1 ... 𝑤 ) ) 𝐾 MonoAP 𝑔 → 𝐾 MonoAP ( 𝑥 ∈ ( 1 ... 𝑤 ) ↦ ( 𝑓 ‘ ( 𝑥 + 𝑤 ) ) ) ) ) |
| 76 |
73 75
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ℕ ) ∧ 𝑓 : ( 1 ... ( 2 · 𝑤 ) ) ⟶ 𝑅 ) → ( ∀ 𝑔 ∈ ( 𝑅 ↑m ( 1 ... 𝑤 ) ) 𝐾 MonoAP 𝑔 → 𝐾 MonoAP ( 𝑥 ∈ ( 1 ... 𝑤 ) ↦ ( 𝑓 ‘ ( 𝑥 + 𝑤 ) ) ) ) ) |
| 77 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
| 78 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ℕ ) ∧ 𝑓 : ( 1 ... ( 2 · 𝑤 ) ) ⟶ 𝑅 ) → 𝐾 ∈ ( ℤ≥ ‘ 2 ) ) |
| 79 |
|
eluznn0 |
⊢ ( ( 2 ∈ ℕ0 ∧ 𝐾 ∈ ( ℤ≥ ‘ 2 ) ) → 𝐾 ∈ ℕ0 ) |
| 80 |
77 78 79
|
sylancr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ℕ ) ∧ 𝑓 : ( 1 ... ( 2 · 𝑤 ) ) ⟶ 𝑅 ) → 𝐾 ∈ ℕ0 ) |
| 81 |
69 80 68
|
vdwmc |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ℕ ) ∧ 𝑓 : ( 1 ... ( 2 · 𝑤 ) ) ⟶ 𝑅 ) → ( 𝐾 MonoAP ( 𝑥 ∈ ( 1 ... 𝑤 ) ↦ ( 𝑓 ‘ ( 𝑥 + 𝑤 ) ) ) ↔ ∃ 𝑐 ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ ( 𝑥 ∈ ( 1 ... 𝑤 ) ↦ ( 𝑓 ‘ ( 𝑥 + 𝑤 ) ) ) “ { 𝑐 } ) ) ) |
| 82 |
40
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℕ ) ∧ 𝑓 : ( 1 ... ( 2 · 𝑤 ) ) ⟶ 𝑅 ) ∧ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ ( 𝑥 ∈ ( 1 ... 𝑤 ) ↦ ( 𝑓 ‘ ( 𝑥 + 𝑤 ) ) ) “ { 𝑐 } ) ) ) → 𝑅 ∈ Fin ) |
| 83 |
78
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℕ ) ∧ 𝑓 : ( 1 ... ( 2 · 𝑤 ) ) ⟶ 𝑅 ) ∧ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ ( 𝑥 ∈ ( 1 ... 𝑤 ) ↦ ( 𝑓 ‘ ( 𝑥 + 𝑤 ) ) ) “ { 𝑐 } ) ) ) → 𝐾 ∈ ( ℤ≥ ‘ 2 ) ) |
| 84 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℕ ) ∧ 𝑓 : ( 1 ... ( 2 · 𝑤 ) ) ⟶ 𝑅 ) ∧ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ ( 𝑥 ∈ ( 1 ... 𝑤 ) ↦ ( 𝑓 ‘ ( 𝑥 + 𝑤 ) ) ) “ { 𝑐 } ) ) ) → 𝑤 ∈ ℕ ) |
| 85 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℕ ) ∧ 𝑓 : ( 1 ... ( 2 · 𝑤 ) ) ⟶ 𝑅 ) ∧ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ ( 𝑥 ∈ ( 1 ... 𝑤 ) ↦ ( 𝑓 ‘ ( 𝑥 + 𝑤 ) ) ) “ { 𝑐 } ) ) ) → 𝑓 : ( 1 ... ( 2 · 𝑤 ) ) ⟶ 𝑅 ) |
| 86 |
|
vex |
⊢ 𝑐 ∈ V |
| 87 |
|
simprll |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℕ ) ∧ 𝑓 : ( 1 ... ( 2 · 𝑤 ) ) ⟶ 𝑅 ) ∧ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ ( 𝑥 ∈ ( 1 ... 𝑤 ) ↦ ( 𝑓 ‘ ( 𝑥 + 𝑤 ) ) ) “ { 𝑐 } ) ) ) → 𝑎 ∈ ℕ ) |
| 88 |
|
simprlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℕ ) ∧ 𝑓 : ( 1 ... ( 2 · 𝑤 ) ) ⟶ 𝑅 ) ∧ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ ( 𝑥 ∈ ( 1 ... 𝑤 ) ↦ ( 𝑓 ‘ ( 𝑥 + 𝑤 ) ) ) “ { 𝑐 } ) ) ) → 𝑑 ∈ ℕ ) |
| 89 |
|
simprr |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℕ ) ∧ 𝑓 : ( 1 ... ( 2 · 𝑤 ) ) ⟶ 𝑅 ) ∧ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ ( 𝑥 ∈ ( 1 ... 𝑤 ) ↦ ( 𝑓 ‘ ( 𝑥 + 𝑤 ) ) ) “ { 𝑐 } ) ) ) → ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ ( 𝑥 ∈ ( 1 ... 𝑤 ) ↦ ( 𝑓 ‘ ( 𝑥 + 𝑤 ) ) ) “ { 𝑐 } ) ) |
| 90 |
82 83 84 85 86 87 88 89 67
|
vdwlem8 |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℕ ) ∧ 𝑓 : ( 1 ... ( 2 · 𝑤 ) ) ⟶ 𝑅 ) ∧ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ ( 𝑥 ∈ ( 1 ... 𝑤 ) ↦ ( 𝑓 ‘ ( 𝑥 + 𝑤 ) ) ) “ { 𝑐 } ) ) ) → 〈 1 , 𝐾 〉 PolyAP 𝑓 ) |
| 91 |
90
|
orcd |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℕ ) ∧ 𝑓 : ( 1 ... ( 2 · 𝑤 ) ) ⟶ 𝑅 ) ∧ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ ( 𝑥 ∈ ( 1 ... 𝑤 ) ↦ ( 𝑓 ‘ ( 𝑥 + 𝑤 ) ) ) “ { 𝑐 } ) ) ) → ( 〈 1 , 𝐾 〉 PolyAP 𝑓 ∨ ( 𝐾 + 1 ) MonoAP 𝑓 ) ) |
| 92 |
91
|
expr |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℕ ) ∧ 𝑓 : ( 1 ... ( 2 · 𝑤 ) ) ⟶ 𝑅 ) ∧ ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ) → ( ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ ( 𝑥 ∈ ( 1 ... 𝑤 ) ↦ ( 𝑓 ‘ ( 𝑥 + 𝑤 ) ) ) “ { 𝑐 } ) → ( 〈 1 , 𝐾 〉 PolyAP 𝑓 ∨ ( 𝐾 + 1 ) MonoAP 𝑓 ) ) ) |
| 93 |
92
|
rexlimdvva |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ℕ ) ∧ 𝑓 : ( 1 ... ( 2 · 𝑤 ) ) ⟶ 𝑅 ) → ( ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ ( 𝑥 ∈ ( 1 ... 𝑤 ) ↦ ( 𝑓 ‘ ( 𝑥 + 𝑤 ) ) ) “ { 𝑐 } ) → ( 〈 1 , 𝐾 〉 PolyAP 𝑓 ∨ ( 𝐾 + 1 ) MonoAP 𝑓 ) ) ) |
| 94 |
93
|
exlimdv |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ℕ ) ∧ 𝑓 : ( 1 ... ( 2 · 𝑤 ) ) ⟶ 𝑅 ) → ( ∃ 𝑐 ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ ( 𝑥 ∈ ( 1 ... 𝑤 ) ↦ ( 𝑓 ‘ ( 𝑥 + 𝑤 ) ) ) “ { 𝑐 } ) → ( 〈 1 , 𝐾 〉 PolyAP 𝑓 ∨ ( 𝐾 + 1 ) MonoAP 𝑓 ) ) ) |
| 95 |
81 94
|
sylbid |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ℕ ) ∧ 𝑓 : ( 1 ... ( 2 · 𝑤 ) ) ⟶ 𝑅 ) → ( 𝐾 MonoAP ( 𝑥 ∈ ( 1 ... 𝑤 ) ↦ ( 𝑓 ‘ ( 𝑥 + 𝑤 ) ) ) → ( 〈 1 , 𝐾 〉 PolyAP 𝑓 ∨ ( 𝐾 + 1 ) MonoAP 𝑓 ) ) ) |
| 96 |
76 95
|
syld |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ℕ ) ∧ 𝑓 : ( 1 ... ( 2 · 𝑤 ) ) ⟶ 𝑅 ) → ( ∀ 𝑔 ∈ ( 𝑅 ↑m ( 1 ... 𝑤 ) ) 𝐾 MonoAP 𝑔 → ( 〈 1 , 𝐾 〉 PolyAP 𝑓 ∨ ( 𝐾 + 1 ) MonoAP 𝑓 ) ) ) |
| 97 |
44 96
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ℕ ) ∧ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... ( 2 · 𝑤 ) ) ) ) → ( ∀ 𝑔 ∈ ( 𝑅 ↑m ( 1 ... 𝑤 ) ) 𝐾 MonoAP 𝑔 → ( 〈 1 , 𝐾 〉 PolyAP 𝑓 ∨ ( 𝐾 + 1 ) MonoAP 𝑓 ) ) ) |
| 98 |
97
|
ralrimdva |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℕ ) → ( ∀ 𝑔 ∈ ( 𝑅 ↑m ( 1 ... 𝑤 ) ) 𝐾 MonoAP 𝑔 → ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... ( 2 · 𝑤 ) ) ) ( 〈 1 , 𝐾 〉 PolyAP 𝑓 ∨ ( 𝐾 + 1 ) MonoAP 𝑓 ) ) ) |
| 99 |
|
oveq2 |
⊢ ( 𝑛 = ( 2 · 𝑤 ) → ( 1 ... 𝑛 ) = ( 1 ... ( 2 · 𝑤 ) ) ) |
| 100 |
99
|
oveq2d |
⊢ ( 𝑛 = ( 2 · 𝑤 ) → ( 𝑅 ↑m ( 1 ... 𝑛 ) ) = ( 𝑅 ↑m ( 1 ... ( 2 · 𝑤 ) ) ) ) |
| 101 |
100
|
raleqdv |
⊢ ( 𝑛 = ( 2 · 𝑤 ) → ( ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 𝑛 ) ) ( 〈 1 , 𝐾 〉 PolyAP 𝑓 ∨ ( 𝐾 + 1 ) MonoAP 𝑓 ) ↔ ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... ( 2 · 𝑤 ) ) ) ( 〈 1 , 𝐾 〉 PolyAP 𝑓 ∨ ( 𝐾 + 1 ) MonoAP 𝑓 ) ) ) |
| 102 |
101
|
rspcev |
⊢ ( ( ( 2 · 𝑤 ) ∈ ℕ ∧ ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... ( 2 · 𝑤 ) ) ) ( 〈 1 , 𝐾 〉 PolyAP 𝑓 ∨ ( 𝐾 + 1 ) MonoAP 𝑓 ) ) → ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 𝑛 ) ) ( 〈 1 , 𝐾 〉 PolyAP 𝑓 ∨ ( 𝐾 + 1 ) MonoAP 𝑓 ) ) |
| 103 |
39 98 102
|
syl6an |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℕ ) → ( ∀ 𝑔 ∈ ( 𝑅 ↑m ( 1 ... 𝑤 ) ) 𝐾 MonoAP 𝑔 → ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 𝑛 ) ) ( 〈 1 , 𝐾 〉 PolyAP 𝑓 ∨ ( 𝐾 + 1 ) MonoAP 𝑓 ) ) ) |
| 104 |
35 103
|
biimtrid |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℕ ) → ( ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 𝑤 ) ) 𝐾 MonoAP 𝑓 → ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 𝑛 ) ) ( 〈 1 , 𝐾 〉 PolyAP 𝑓 ∨ ( 𝐾 + 1 ) MonoAP 𝑓 ) ) ) |
| 105 |
104
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑤 ∈ ℕ ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 𝑤 ) ) 𝐾 MonoAP 𝑓 → ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 𝑛 ) ) ( 〈 1 , 𝐾 〉 PolyAP 𝑓 ∨ ( 𝐾 + 1 ) MonoAP 𝑓 ) ) ) |
| 106 |
33 105
|
mpd |
⊢ ( 𝜑 → ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 𝑛 ) ) ( 〈 1 , 𝐾 〉 PolyAP 𝑓 ∨ ( 𝐾 + 1 ) MonoAP 𝑓 ) ) |
| 107 |
|
breq2 |
⊢ ( 𝑓 = 𝑔 → ( 〈 𝑚 , 𝐾 〉 PolyAP 𝑓 ↔ 〈 𝑚 , 𝐾 〉 PolyAP 𝑔 ) ) |
| 108 |
|
breq2 |
⊢ ( 𝑓 = 𝑔 → ( ( 𝐾 + 1 ) MonoAP 𝑓 ↔ ( 𝐾 + 1 ) MonoAP 𝑔 ) ) |
| 109 |
107 108
|
orbi12d |
⊢ ( 𝑓 = 𝑔 → ( ( 〈 𝑚 , 𝐾 〉 PolyAP 𝑓 ∨ ( 𝐾 + 1 ) MonoAP 𝑓 ) ↔ ( 〈 𝑚 , 𝐾 〉 PolyAP 𝑔 ∨ ( 𝐾 + 1 ) MonoAP 𝑔 ) ) ) |
| 110 |
109
|
cbvralvw |
⊢ ( ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 𝑛 ) ) ( 〈 𝑚 , 𝐾 〉 PolyAP 𝑓 ∨ ( 𝐾 + 1 ) MonoAP 𝑓 ) ↔ ∀ 𝑔 ∈ ( 𝑅 ↑m ( 1 ... 𝑛 ) ) ( 〈 𝑚 , 𝐾 〉 PolyAP 𝑔 ∨ ( 𝐾 + 1 ) MonoAP 𝑔 ) ) |
| 111 |
30
|
raleqdv |
⊢ ( 𝑛 = 𝑤 → ( ∀ 𝑔 ∈ ( 𝑅 ↑m ( 1 ... 𝑛 ) ) ( 〈 𝑚 , 𝐾 〉 PolyAP 𝑔 ∨ ( 𝐾 + 1 ) MonoAP 𝑔 ) ↔ ∀ 𝑔 ∈ ( 𝑅 ↑m ( 1 ... 𝑤 ) ) ( 〈 𝑚 , 𝐾 〉 PolyAP 𝑔 ∨ ( 𝐾 + 1 ) MonoAP 𝑔 ) ) ) |
| 112 |
110 111
|
bitrid |
⊢ ( 𝑛 = 𝑤 → ( ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 𝑛 ) ) ( 〈 𝑚 , 𝐾 〉 PolyAP 𝑓 ∨ ( 𝐾 + 1 ) MonoAP 𝑓 ) ↔ ∀ 𝑔 ∈ ( 𝑅 ↑m ( 1 ... 𝑤 ) ) ( 〈 𝑚 , 𝐾 〉 PolyAP 𝑔 ∨ ( 𝐾 + 1 ) MonoAP 𝑔 ) ) ) |
| 113 |
112
|
cbvrexvw |
⊢ ( ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 𝑛 ) ) ( 〈 𝑚 , 𝐾 〉 PolyAP 𝑓 ∨ ( 𝐾 + 1 ) MonoAP 𝑓 ) ↔ ∃ 𝑤 ∈ ℕ ∀ 𝑔 ∈ ( 𝑅 ↑m ( 1 ... 𝑤 ) ) ( 〈 𝑚 , 𝐾 〉 PolyAP 𝑔 ∨ ( 𝐾 + 1 ) MonoAP 𝑔 ) ) |
| 114 |
|
oveq2 |
⊢ ( 𝑛 = 𝑣 → ( 1 ... 𝑛 ) = ( 1 ... 𝑣 ) ) |
| 115 |
114
|
oveq2d |
⊢ ( 𝑛 = 𝑣 → ( 𝑠 ↑m ( 1 ... 𝑛 ) ) = ( 𝑠 ↑m ( 1 ... 𝑣 ) ) ) |
| 116 |
115
|
raleqdv |
⊢ ( 𝑛 = 𝑣 → ( ∀ 𝑓 ∈ ( 𝑠 ↑m ( 1 ... 𝑛 ) ) 𝐾 MonoAP 𝑓 ↔ ∀ 𝑓 ∈ ( 𝑠 ↑m ( 1 ... 𝑣 ) ) 𝐾 MonoAP 𝑓 ) ) |
| 117 |
116
|
cbvrexvw |
⊢ ( ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑠 ↑m ( 1 ... 𝑛 ) ) 𝐾 MonoAP 𝑓 ↔ ∃ 𝑣 ∈ ℕ ∀ 𝑓 ∈ ( 𝑠 ↑m ( 1 ... 𝑣 ) ) 𝐾 MonoAP 𝑓 ) |
| 118 |
|
oveq1 |
⊢ ( 𝑠 = ( 𝑅 ↑m ( 1 ... 𝑤 ) ) → ( 𝑠 ↑m ( 1 ... 𝑣 ) ) = ( ( 𝑅 ↑m ( 1 ... 𝑤 ) ) ↑m ( 1 ... 𝑣 ) ) ) |
| 119 |
118
|
raleqdv |
⊢ ( 𝑠 = ( 𝑅 ↑m ( 1 ... 𝑤 ) ) → ( ∀ 𝑓 ∈ ( 𝑠 ↑m ( 1 ... 𝑣 ) ) 𝐾 MonoAP 𝑓 ↔ ∀ 𝑓 ∈ ( ( 𝑅 ↑m ( 1 ... 𝑤 ) ) ↑m ( 1 ... 𝑣 ) ) 𝐾 MonoAP 𝑓 ) ) |
| 120 |
119
|
rexbidv |
⊢ ( 𝑠 = ( 𝑅 ↑m ( 1 ... 𝑤 ) ) → ( ∃ 𝑣 ∈ ℕ ∀ 𝑓 ∈ ( 𝑠 ↑m ( 1 ... 𝑣 ) ) 𝐾 MonoAP 𝑓 ↔ ∃ 𝑣 ∈ ℕ ∀ 𝑓 ∈ ( ( 𝑅 ↑m ( 1 ... 𝑤 ) ) ↑m ( 1 ... 𝑣 ) ) 𝐾 MonoAP 𝑓 ) ) |
| 121 |
117 120
|
bitrid |
⊢ ( 𝑠 = ( 𝑅 ↑m ( 1 ... 𝑤 ) ) → ( ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑠 ↑m ( 1 ... 𝑛 ) ) 𝐾 MonoAP 𝑓 ↔ ∃ 𝑣 ∈ ℕ ∀ 𝑓 ∈ ( ( 𝑅 ↑m ( 1 ... 𝑤 ) ) ↑m ( 1 ... 𝑣 ) ) 𝐾 MonoAP 𝑓 ) ) |
| 122 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑤 ∈ ℕ ∧ ∀ 𝑔 ∈ ( 𝑅 ↑m ( 1 ... 𝑤 ) ) ( 〈 𝑚 , 𝐾 〉 PolyAP 𝑔 ∨ ( 𝐾 + 1 ) MonoAP 𝑔 ) ) ) → ∀ 𝑠 ∈ Fin ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑠 ↑m ( 1 ... 𝑛 ) ) 𝐾 MonoAP 𝑓 ) |
| 123 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑤 ∈ ℕ ∧ ∀ 𝑔 ∈ ( 𝑅 ↑m ( 1 ... 𝑤 ) ) ( 〈 𝑚 , 𝐾 〉 PolyAP 𝑔 ∨ ( 𝐾 + 1 ) MonoAP 𝑔 ) ) ) → 𝑅 ∈ Fin ) |
| 124 |
|
fzfi |
⊢ ( 1 ... 𝑤 ) ∈ Fin |
| 125 |
|
mapfi |
⊢ ( ( 𝑅 ∈ Fin ∧ ( 1 ... 𝑤 ) ∈ Fin ) → ( 𝑅 ↑m ( 1 ... 𝑤 ) ) ∈ Fin ) |
| 126 |
123 124 125
|
sylancl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑤 ∈ ℕ ∧ ∀ 𝑔 ∈ ( 𝑅 ↑m ( 1 ... 𝑤 ) ) ( 〈 𝑚 , 𝐾 〉 PolyAP 𝑔 ∨ ( 𝐾 + 1 ) MonoAP 𝑔 ) ) ) → ( 𝑅 ↑m ( 1 ... 𝑤 ) ) ∈ Fin ) |
| 127 |
121 122 126
|
rspcdva |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑤 ∈ ℕ ∧ ∀ 𝑔 ∈ ( 𝑅 ↑m ( 1 ... 𝑤 ) ) ( 〈 𝑚 , 𝐾 〉 PolyAP 𝑔 ∨ ( 𝐾 + 1 ) MonoAP 𝑔 ) ) ) → ∃ 𝑣 ∈ ℕ ∀ 𝑓 ∈ ( ( 𝑅 ↑m ( 1 ... 𝑤 ) ) ↑m ( 1 ... 𝑣 ) ) 𝐾 MonoAP 𝑓 ) |
| 128 |
|
simprll |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( 𝑤 ∈ ℕ ∧ ∀ 𝑔 ∈ ( 𝑅 ↑m ( 1 ... 𝑤 ) ) ( 〈 𝑚 , 𝐾 〉 PolyAP 𝑔 ∨ ( 𝐾 + 1 ) MonoAP 𝑔 ) ) ∧ ( 𝑣 ∈ ℕ ∧ ∀ 𝑓 ∈ ( ( 𝑅 ↑m ( 1 ... 𝑤 ) ) ↑m ( 1 ... 𝑣 ) ) 𝐾 MonoAP 𝑓 ) ) ) → 𝑤 ∈ ℕ ) |
| 129 |
|
simprrl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( 𝑤 ∈ ℕ ∧ ∀ 𝑔 ∈ ( 𝑅 ↑m ( 1 ... 𝑤 ) ) ( 〈 𝑚 , 𝐾 〉 PolyAP 𝑔 ∨ ( 𝐾 + 1 ) MonoAP 𝑔 ) ) ∧ ( 𝑣 ∈ ℕ ∧ ∀ 𝑓 ∈ ( ( 𝑅 ↑m ( 1 ... 𝑤 ) ) ↑m ( 1 ... 𝑣 ) ) 𝐾 MonoAP 𝑓 ) ) ) → 𝑣 ∈ ℕ ) |
| 130 |
|
nnmulcl |
⊢ ( ( 2 ∈ ℕ ∧ 𝑣 ∈ ℕ ) → ( 2 · 𝑣 ) ∈ ℕ ) |
| 131 |
36 130
|
mpan |
⊢ ( 𝑣 ∈ ℕ → ( 2 · 𝑣 ) ∈ ℕ ) |
| 132 |
|
nnmulcl |
⊢ ( ( 𝑤 ∈ ℕ ∧ ( 2 · 𝑣 ) ∈ ℕ ) → ( 𝑤 · ( 2 · 𝑣 ) ) ∈ ℕ ) |
| 133 |
131 132
|
sylan2 |
⊢ ( ( 𝑤 ∈ ℕ ∧ 𝑣 ∈ ℕ ) → ( 𝑤 · ( 2 · 𝑣 ) ) ∈ ℕ ) |
| 134 |
128 129 133
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( 𝑤 ∈ ℕ ∧ ∀ 𝑔 ∈ ( 𝑅 ↑m ( 1 ... 𝑤 ) ) ( 〈 𝑚 , 𝐾 〉 PolyAP 𝑔 ∨ ( 𝐾 + 1 ) MonoAP 𝑔 ) ) ∧ ( 𝑣 ∈ ℕ ∧ ∀ 𝑓 ∈ ( ( 𝑅 ↑m ( 1 ... 𝑤 ) ) ↑m ( 1 ... 𝑣 ) ) 𝐾 MonoAP 𝑓 ) ) ) → ( 𝑤 · ( 2 · 𝑣 ) ) ∈ ℕ ) |
| 135 |
|
simp1l |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( 𝑤 ∈ ℕ ∧ ∀ 𝑔 ∈ ( 𝑅 ↑m ( 1 ... 𝑤 ) ) ( 〈 𝑚 , 𝐾 〉 PolyAP 𝑔 ∨ ( 𝐾 + 1 ) MonoAP 𝑔 ) ) ∧ ( 𝑣 ∈ ℕ ∧ ∀ 𝑓 ∈ ( ( 𝑅 ↑m ( 1 ... 𝑤 ) ) ↑m ( 1 ... 𝑣 ) ) 𝐾 MonoAP 𝑓 ) ) ∧ ℎ ∈ ( 𝑅 ↑m ( 1 ... ( 𝑤 · ( 2 · 𝑣 ) ) ) ) ) → 𝜑 ) |
| 136 |
135 1
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( 𝑤 ∈ ℕ ∧ ∀ 𝑔 ∈ ( 𝑅 ↑m ( 1 ... 𝑤 ) ) ( 〈 𝑚 , 𝐾 〉 PolyAP 𝑔 ∨ ( 𝐾 + 1 ) MonoAP 𝑔 ) ) ∧ ( 𝑣 ∈ ℕ ∧ ∀ 𝑓 ∈ ( ( 𝑅 ↑m ( 1 ... 𝑤 ) ) ↑m ( 1 ... 𝑣 ) ) 𝐾 MonoAP 𝑓 ) ) ∧ ℎ ∈ ( 𝑅 ↑m ( 1 ... ( 𝑤 · ( 2 · 𝑣 ) ) ) ) ) → 𝑅 ∈ Fin ) |
| 137 |
135 2
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( 𝑤 ∈ ℕ ∧ ∀ 𝑔 ∈ ( 𝑅 ↑m ( 1 ... 𝑤 ) ) ( 〈 𝑚 , 𝐾 〉 PolyAP 𝑔 ∨ ( 𝐾 + 1 ) MonoAP 𝑔 ) ) ∧ ( 𝑣 ∈ ℕ ∧ ∀ 𝑓 ∈ ( ( 𝑅 ↑m ( 1 ... 𝑤 ) ) ↑m ( 1 ... 𝑣 ) ) 𝐾 MonoAP 𝑓 ) ) ∧ ℎ ∈ ( 𝑅 ↑m ( 1 ... ( 𝑤 · ( 2 · 𝑣 ) ) ) ) ) → 𝐾 ∈ ( ℤ≥ ‘ 2 ) ) |
| 138 |
135 3
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( 𝑤 ∈ ℕ ∧ ∀ 𝑔 ∈ ( 𝑅 ↑m ( 1 ... 𝑤 ) ) ( 〈 𝑚 , 𝐾 〉 PolyAP 𝑔 ∨ ( 𝐾 + 1 ) MonoAP 𝑔 ) ) ∧ ( 𝑣 ∈ ℕ ∧ ∀ 𝑓 ∈ ( ( 𝑅 ↑m ( 1 ... 𝑤 ) ) ↑m ( 1 ... 𝑣 ) ) 𝐾 MonoAP 𝑓 ) ) ∧ ℎ ∈ ( 𝑅 ↑m ( 1 ... ( 𝑤 · ( 2 · 𝑣 ) ) ) ) ) → ∀ 𝑠 ∈ Fin ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑠 ↑m ( 1 ... 𝑛 ) ) 𝐾 MonoAP 𝑓 ) |
| 139 |
|
simp1r |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( 𝑤 ∈ ℕ ∧ ∀ 𝑔 ∈ ( 𝑅 ↑m ( 1 ... 𝑤 ) ) ( 〈 𝑚 , 𝐾 〉 PolyAP 𝑔 ∨ ( 𝐾 + 1 ) MonoAP 𝑔 ) ) ∧ ( 𝑣 ∈ ℕ ∧ ∀ 𝑓 ∈ ( ( 𝑅 ↑m ( 1 ... 𝑤 ) ) ↑m ( 1 ... 𝑣 ) ) 𝐾 MonoAP 𝑓 ) ) ∧ ℎ ∈ ( 𝑅 ↑m ( 1 ... ( 𝑤 · ( 2 · 𝑣 ) ) ) ) ) → 𝑚 ∈ ℕ ) |
| 140 |
|
simp2ll |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( 𝑤 ∈ ℕ ∧ ∀ 𝑔 ∈ ( 𝑅 ↑m ( 1 ... 𝑤 ) ) ( 〈 𝑚 , 𝐾 〉 PolyAP 𝑔 ∨ ( 𝐾 + 1 ) MonoAP 𝑔 ) ) ∧ ( 𝑣 ∈ ℕ ∧ ∀ 𝑓 ∈ ( ( 𝑅 ↑m ( 1 ... 𝑤 ) ) ↑m ( 1 ... 𝑣 ) ) 𝐾 MonoAP 𝑓 ) ) ∧ ℎ ∈ ( 𝑅 ↑m ( 1 ... ( 𝑤 · ( 2 · 𝑣 ) ) ) ) ) → 𝑤 ∈ ℕ ) |
| 141 |
|
simp2lr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( 𝑤 ∈ ℕ ∧ ∀ 𝑔 ∈ ( 𝑅 ↑m ( 1 ... 𝑤 ) ) ( 〈 𝑚 , 𝐾 〉 PolyAP 𝑔 ∨ ( 𝐾 + 1 ) MonoAP 𝑔 ) ) ∧ ( 𝑣 ∈ ℕ ∧ ∀ 𝑓 ∈ ( ( 𝑅 ↑m ( 1 ... 𝑤 ) ) ↑m ( 1 ... 𝑣 ) ) 𝐾 MonoAP 𝑓 ) ) ∧ ℎ ∈ ( 𝑅 ↑m ( 1 ... ( 𝑤 · ( 2 · 𝑣 ) ) ) ) ) → ∀ 𝑔 ∈ ( 𝑅 ↑m ( 1 ... 𝑤 ) ) ( 〈 𝑚 , 𝐾 〉 PolyAP 𝑔 ∨ ( 𝐾 + 1 ) MonoAP 𝑔 ) ) |
| 142 |
|
breq2 |
⊢ ( 𝑔 = 𝑘 → ( 〈 𝑚 , 𝐾 〉 PolyAP 𝑔 ↔ 〈 𝑚 , 𝐾 〉 PolyAP 𝑘 ) ) |
| 143 |
|
breq2 |
⊢ ( 𝑔 = 𝑘 → ( ( 𝐾 + 1 ) MonoAP 𝑔 ↔ ( 𝐾 + 1 ) MonoAP 𝑘 ) ) |
| 144 |
142 143
|
orbi12d |
⊢ ( 𝑔 = 𝑘 → ( ( 〈 𝑚 , 𝐾 〉 PolyAP 𝑔 ∨ ( 𝐾 + 1 ) MonoAP 𝑔 ) ↔ ( 〈 𝑚 , 𝐾 〉 PolyAP 𝑘 ∨ ( 𝐾 + 1 ) MonoAP 𝑘 ) ) ) |
| 145 |
144
|
cbvralvw |
⊢ ( ∀ 𝑔 ∈ ( 𝑅 ↑m ( 1 ... 𝑤 ) ) ( 〈 𝑚 , 𝐾 〉 PolyAP 𝑔 ∨ ( 𝐾 + 1 ) MonoAP 𝑔 ) ↔ ∀ 𝑘 ∈ ( 𝑅 ↑m ( 1 ... 𝑤 ) ) ( 〈 𝑚 , 𝐾 〉 PolyAP 𝑘 ∨ ( 𝐾 + 1 ) MonoAP 𝑘 ) ) |
| 146 |
141 145
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( 𝑤 ∈ ℕ ∧ ∀ 𝑔 ∈ ( 𝑅 ↑m ( 1 ... 𝑤 ) ) ( 〈 𝑚 , 𝐾 〉 PolyAP 𝑔 ∨ ( 𝐾 + 1 ) MonoAP 𝑔 ) ) ∧ ( 𝑣 ∈ ℕ ∧ ∀ 𝑓 ∈ ( ( 𝑅 ↑m ( 1 ... 𝑤 ) ) ↑m ( 1 ... 𝑣 ) ) 𝐾 MonoAP 𝑓 ) ) ∧ ℎ ∈ ( 𝑅 ↑m ( 1 ... ( 𝑤 · ( 2 · 𝑣 ) ) ) ) ) → ∀ 𝑘 ∈ ( 𝑅 ↑m ( 1 ... 𝑤 ) ) ( 〈 𝑚 , 𝐾 〉 PolyAP 𝑘 ∨ ( 𝐾 + 1 ) MonoAP 𝑘 ) ) |
| 147 |
|
simp2rl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( 𝑤 ∈ ℕ ∧ ∀ 𝑔 ∈ ( 𝑅 ↑m ( 1 ... 𝑤 ) ) ( 〈 𝑚 , 𝐾 〉 PolyAP 𝑔 ∨ ( 𝐾 + 1 ) MonoAP 𝑔 ) ) ∧ ( 𝑣 ∈ ℕ ∧ ∀ 𝑓 ∈ ( ( 𝑅 ↑m ( 1 ... 𝑤 ) ) ↑m ( 1 ... 𝑣 ) ) 𝐾 MonoAP 𝑓 ) ) ∧ ℎ ∈ ( 𝑅 ↑m ( 1 ... ( 𝑤 · ( 2 · 𝑣 ) ) ) ) ) → 𝑣 ∈ ℕ ) |
| 148 |
|
simp2rr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( 𝑤 ∈ ℕ ∧ ∀ 𝑔 ∈ ( 𝑅 ↑m ( 1 ... 𝑤 ) ) ( 〈 𝑚 , 𝐾 〉 PolyAP 𝑔 ∨ ( 𝐾 + 1 ) MonoAP 𝑔 ) ) ∧ ( 𝑣 ∈ ℕ ∧ ∀ 𝑓 ∈ ( ( 𝑅 ↑m ( 1 ... 𝑤 ) ) ↑m ( 1 ... 𝑣 ) ) 𝐾 MonoAP 𝑓 ) ) ∧ ℎ ∈ ( 𝑅 ↑m ( 1 ... ( 𝑤 · ( 2 · 𝑣 ) ) ) ) ) → ∀ 𝑓 ∈ ( ( 𝑅 ↑m ( 1 ... 𝑤 ) ) ↑m ( 1 ... 𝑣 ) ) 𝐾 MonoAP 𝑓 ) |
| 149 |
|
simp3 |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( 𝑤 ∈ ℕ ∧ ∀ 𝑔 ∈ ( 𝑅 ↑m ( 1 ... 𝑤 ) ) ( 〈 𝑚 , 𝐾 〉 PolyAP 𝑔 ∨ ( 𝐾 + 1 ) MonoAP 𝑔 ) ) ∧ ( 𝑣 ∈ ℕ ∧ ∀ 𝑓 ∈ ( ( 𝑅 ↑m ( 1 ... 𝑤 ) ) ↑m ( 1 ... 𝑣 ) ) 𝐾 MonoAP 𝑓 ) ) ∧ ℎ ∈ ( 𝑅 ↑m ( 1 ... ( 𝑤 · ( 2 · 𝑣 ) ) ) ) ) → ℎ ∈ ( 𝑅 ↑m ( 1 ... ( 𝑤 · ( 2 · 𝑣 ) ) ) ) ) |
| 150 |
|
ovex |
⊢ ( 1 ... ( 𝑤 · ( 2 · 𝑣 ) ) ) ∈ V |
| 151 |
|
elmapg |
⊢ ( ( 𝑅 ∈ Fin ∧ ( 1 ... ( 𝑤 · ( 2 · 𝑣 ) ) ) ∈ V ) → ( ℎ ∈ ( 𝑅 ↑m ( 1 ... ( 𝑤 · ( 2 · 𝑣 ) ) ) ) ↔ ℎ : ( 1 ... ( 𝑤 · ( 2 · 𝑣 ) ) ) ⟶ 𝑅 ) ) |
| 152 |
136 150 151
|
sylancl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( 𝑤 ∈ ℕ ∧ ∀ 𝑔 ∈ ( 𝑅 ↑m ( 1 ... 𝑤 ) ) ( 〈 𝑚 , 𝐾 〉 PolyAP 𝑔 ∨ ( 𝐾 + 1 ) MonoAP 𝑔 ) ) ∧ ( 𝑣 ∈ ℕ ∧ ∀ 𝑓 ∈ ( ( 𝑅 ↑m ( 1 ... 𝑤 ) ) ↑m ( 1 ... 𝑣 ) ) 𝐾 MonoAP 𝑓 ) ) ∧ ℎ ∈ ( 𝑅 ↑m ( 1 ... ( 𝑤 · ( 2 · 𝑣 ) ) ) ) ) → ( ℎ ∈ ( 𝑅 ↑m ( 1 ... ( 𝑤 · ( 2 · 𝑣 ) ) ) ) ↔ ℎ : ( 1 ... ( 𝑤 · ( 2 · 𝑣 ) ) ) ⟶ 𝑅 ) ) |
| 153 |
149 152
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( 𝑤 ∈ ℕ ∧ ∀ 𝑔 ∈ ( 𝑅 ↑m ( 1 ... 𝑤 ) ) ( 〈 𝑚 , 𝐾 〉 PolyAP 𝑔 ∨ ( 𝐾 + 1 ) MonoAP 𝑔 ) ) ∧ ( 𝑣 ∈ ℕ ∧ ∀ 𝑓 ∈ ( ( 𝑅 ↑m ( 1 ... 𝑤 ) ) ↑m ( 1 ... 𝑣 ) ) 𝐾 MonoAP 𝑓 ) ) ∧ ℎ ∈ ( 𝑅 ↑m ( 1 ... ( 𝑤 · ( 2 · 𝑣 ) ) ) ) ) → ℎ : ( 1 ... ( 𝑤 · ( 2 · 𝑣 ) ) ) ⟶ 𝑅 ) |
| 154 |
|
fvoveq1 |
⊢ ( 𝑦 = 𝑢 → ( ℎ ‘ ( 𝑦 + ( 𝑤 · ( ( 𝑥 − 1 ) + 𝑣 ) ) ) ) = ( ℎ ‘ ( 𝑢 + ( 𝑤 · ( ( 𝑥 − 1 ) + 𝑣 ) ) ) ) ) |
| 155 |
154
|
cbvmptv |
⊢ ( 𝑦 ∈ ( 1 ... 𝑤 ) ↦ ( ℎ ‘ ( 𝑦 + ( 𝑤 · ( ( 𝑥 − 1 ) + 𝑣 ) ) ) ) ) = ( 𝑢 ∈ ( 1 ... 𝑤 ) ↦ ( ℎ ‘ ( 𝑢 + ( 𝑤 · ( ( 𝑥 − 1 ) + 𝑣 ) ) ) ) ) |
| 156 |
|
oveq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 − 1 ) = ( 𝑧 − 1 ) ) |
| 157 |
156
|
oveq1d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 − 1 ) + 𝑣 ) = ( ( 𝑧 − 1 ) + 𝑣 ) ) |
| 158 |
157
|
oveq2d |
⊢ ( 𝑥 = 𝑧 → ( 𝑤 · ( ( 𝑥 − 1 ) + 𝑣 ) ) = ( 𝑤 · ( ( 𝑧 − 1 ) + 𝑣 ) ) ) |
| 159 |
158
|
oveq2d |
⊢ ( 𝑥 = 𝑧 → ( 𝑢 + ( 𝑤 · ( ( 𝑥 − 1 ) + 𝑣 ) ) ) = ( 𝑢 + ( 𝑤 · ( ( 𝑧 − 1 ) + 𝑣 ) ) ) ) |
| 160 |
159
|
fveq2d |
⊢ ( 𝑥 = 𝑧 → ( ℎ ‘ ( 𝑢 + ( 𝑤 · ( ( 𝑥 − 1 ) + 𝑣 ) ) ) ) = ( ℎ ‘ ( 𝑢 + ( 𝑤 · ( ( 𝑧 − 1 ) + 𝑣 ) ) ) ) ) |
| 161 |
160
|
mpteq2dv |
⊢ ( 𝑥 = 𝑧 → ( 𝑢 ∈ ( 1 ... 𝑤 ) ↦ ( ℎ ‘ ( 𝑢 + ( 𝑤 · ( ( 𝑥 − 1 ) + 𝑣 ) ) ) ) ) = ( 𝑢 ∈ ( 1 ... 𝑤 ) ↦ ( ℎ ‘ ( 𝑢 + ( 𝑤 · ( ( 𝑧 − 1 ) + 𝑣 ) ) ) ) ) ) |
| 162 |
155 161
|
eqtrid |
⊢ ( 𝑥 = 𝑧 → ( 𝑦 ∈ ( 1 ... 𝑤 ) ↦ ( ℎ ‘ ( 𝑦 + ( 𝑤 · ( ( 𝑥 − 1 ) + 𝑣 ) ) ) ) ) = ( 𝑢 ∈ ( 1 ... 𝑤 ) ↦ ( ℎ ‘ ( 𝑢 + ( 𝑤 · ( ( 𝑧 − 1 ) + 𝑣 ) ) ) ) ) ) |
| 163 |
162
|
cbvmptv |
⊢ ( 𝑥 ∈ ( 1 ... 𝑣 ) ↦ ( 𝑦 ∈ ( 1 ... 𝑤 ) ↦ ( ℎ ‘ ( 𝑦 + ( 𝑤 · ( ( 𝑥 − 1 ) + 𝑣 ) ) ) ) ) ) = ( 𝑧 ∈ ( 1 ... 𝑣 ) ↦ ( 𝑢 ∈ ( 1 ... 𝑤 ) ↦ ( ℎ ‘ ( 𝑢 + ( 𝑤 · ( ( 𝑧 − 1 ) + 𝑣 ) ) ) ) ) ) |
| 164 |
136 137 138 139 140 146 147 148 153 163
|
vdwlem9 |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( 𝑤 ∈ ℕ ∧ ∀ 𝑔 ∈ ( 𝑅 ↑m ( 1 ... 𝑤 ) ) ( 〈 𝑚 , 𝐾 〉 PolyAP 𝑔 ∨ ( 𝐾 + 1 ) MonoAP 𝑔 ) ) ∧ ( 𝑣 ∈ ℕ ∧ ∀ 𝑓 ∈ ( ( 𝑅 ↑m ( 1 ... 𝑤 ) ) ↑m ( 1 ... 𝑣 ) ) 𝐾 MonoAP 𝑓 ) ) ∧ ℎ ∈ ( 𝑅 ↑m ( 1 ... ( 𝑤 · ( 2 · 𝑣 ) ) ) ) ) → ( 〈 ( 𝑚 + 1 ) , 𝐾 〉 PolyAP ℎ ∨ ( 𝐾 + 1 ) MonoAP ℎ ) ) |
| 165 |
164
|
3expia |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( 𝑤 ∈ ℕ ∧ ∀ 𝑔 ∈ ( 𝑅 ↑m ( 1 ... 𝑤 ) ) ( 〈 𝑚 , 𝐾 〉 PolyAP 𝑔 ∨ ( 𝐾 + 1 ) MonoAP 𝑔 ) ) ∧ ( 𝑣 ∈ ℕ ∧ ∀ 𝑓 ∈ ( ( 𝑅 ↑m ( 1 ... 𝑤 ) ) ↑m ( 1 ... 𝑣 ) ) 𝐾 MonoAP 𝑓 ) ) ) → ( ℎ ∈ ( 𝑅 ↑m ( 1 ... ( 𝑤 · ( 2 · 𝑣 ) ) ) ) → ( 〈 ( 𝑚 + 1 ) , 𝐾 〉 PolyAP ℎ ∨ ( 𝐾 + 1 ) MonoAP ℎ ) ) ) |
| 166 |
165
|
ralrimiv |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( 𝑤 ∈ ℕ ∧ ∀ 𝑔 ∈ ( 𝑅 ↑m ( 1 ... 𝑤 ) ) ( 〈 𝑚 , 𝐾 〉 PolyAP 𝑔 ∨ ( 𝐾 + 1 ) MonoAP 𝑔 ) ) ∧ ( 𝑣 ∈ ℕ ∧ ∀ 𝑓 ∈ ( ( 𝑅 ↑m ( 1 ... 𝑤 ) ) ↑m ( 1 ... 𝑣 ) ) 𝐾 MonoAP 𝑓 ) ) ) → ∀ ℎ ∈ ( 𝑅 ↑m ( 1 ... ( 𝑤 · ( 2 · 𝑣 ) ) ) ) ( 〈 ( 𝑚 + 1 ) , 𝐾 〉 PolyAP ℎ ∨ ( 𝐾 + 1 ) MonoAP ℎ ) ) |
| 167 |
|
oveq2 |
⊢ ( 𝑛 = ( 𝑤 · ( 2 · 𝑣 ) ) → ( 1 ... 𝑛 ) = ( 1 ... ( 𝑤 · ( 2 · 𝑣 ) ) ) ) |
| 168 |
167
|
oveq2d |
⊢ ( 𝑛 = ( 𝑤 · ( 2 · 𝑣 ) ) → ( 𝑅 ↑m ( 1 ... 𝑛 ) ) = ( 𝑅 ↑m ( 1 ... ( 𝑤 · ( 2 · 𝑣 ) ) ) ) ) |
| 169 |
168
|
raleqdv |
⊢ ( 𝑛 = ( 𝑤 · ( 2 · 𝑣 ) ) → ( ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 𝑛 ) ) ( 〈 ( 𝑚 + 1 ) , 𝐾 〉 PolyAP 𝑓 ∨ ( 𝐾 + 1 ) MonoAP 𝑓 ) ↔ ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... ( 𝑤 · ( 2 · 𝑣 ) ) ) ) ( 〈 ( 𝑚 + 1 ) , 𝐾 〉 PolyAP 𝑓 ∨ ( 𝐾 + 1 ) MonoAP 𝑓 ) ) ) |
| 170 |
|
breq2 |
⊢ ( 𝑓 = ℎ → ( 〈 ( 𝑚 + 1 ) , 𝐾 〉 PolyAP 𝑓 ↔ 〈 ( 𝑚 + 1 ) , 𝐾 〉 PolyAP ℎ ) ) |
| 171 |
|
breq2 |
⊢ ( 𝑓 = ℎ → ( ( 𝐾 + 1 ) MonoAP 𝑓 ↔ ( 𝐾 + 1 ) MonoAP ℎ ) ) |
| 172 |
170 171
|
orbi12d |
⊢ ( 𝑓 = ℎ → ( ( 〈 ( 𝑚 + 1 ) , 𝐾 〉 PolyAP 𝑓 ∨ ( 𝐾 + 1 ) MonoAP 𝑓 ) ↔ ( 〈 ( 𝑚 + 1 ) , 𝐾 〉 PolyAP ℎ ∨ ( 𝐾 + 1 ) MonoAP ℎ ) ) ) |
| 173 |
172
|
cbvralvw |
⊢ ( ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... ( 𝑤 · ( 2 · 𝑣 ) ) ) ) ( 〈 ( 𝑚 + 1 ) , 𝐾 〉 PolyAP 𝑓 ∨ ( 𝐾 + 1 ) MonoAP 𝑓 ) ↔ ∀ ℎ ∈ ( 𝑅 ↑m ( 1 ... ( 𝑤 · ( 2 · 𝑣 ) ) ) ) ( 〈 ( 𝑚 + 1 ) , 𝐾 〉 PolyAP ℎ ∨ ( 𝐾 + 1 ) MonoAP ℎ ) ) |
| 174 |
169 173
|
bitrdi |
⊢ ( 𝑛 = ( 𝑤 · ( 2 · 𝑣 ) ) → ( ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 𝑛 ) ) ( 〈 ( 𝑚 + 1 ) , 𝐾 〉 PolyAP 𝑓 ∨ ( 𝐾 + 1 ) MonoAP 𝑓 ) ↔ ∀ ℎ ∈ ( 𝑅 ↑m ( 1 ... ( 𝑤 · ( 2 · 𝑣 ) ) ) ) ( 〈 ( 𝑚 + 1 ) , 𝐾 〉 PolyAP ℎ ∨ ( 𝐾 + 1 ) MonoAP ℎ ) ) ) |
| 175 |
174
|
rspcev |
⊢ ( ( ( 𝑤 · ( 2 · 𝑣 ) ) ∈ ℕ ∧ ∀ ℎ ∈ ( 𝑅 ↑m ( 1 ... ( 𝑤 · ( 2 · 𝑣 ) ) ) ) ( 〈 ( 𝑚 + 1 ) , 𝐾 〉 PolyAP ℎ ∨ ( 𝐾 + 1 ) MonoAP ℎ ) ) → ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 𝑛 ) ) ( 〈 ( 𝑚 + 1 ) , 𝐾 〉 PolyAP 𝑓 ∨ ( 𝐾 + 1 ) MonoAP 𝑓 ) ) |
| 176 |
134 166 175
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( 𝑤 ∈ ℕ ∧ ∀ 𝑔 ∈ ( 𝑅 ↑m ( 1 ... 𝑤 ) ) ( 〈 𝑚 , 𝐾 〉 PolyAP 𝑔 ∨ ( 𝐾 + 1 ) MonoAP 𝑔 ) ) ∧ ( 𝑣 ∈ ℕ ∧ ∀ 𝑓 ∈ ( ( 𝑅 ↑m ( 1 ... 𝑤 ) ) ↑m ( 1 ... 𝑣 ) ) 𝐾 MonoAP 𝑓 ) ) ) → ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 𝑛 ) ) ( 〈 ( 𝑚 + 1 ) , 𝐾 〉 PolyAP 𝑓 ∨ ( 𝐾 + 1 ) MonoAP 𝑓 ) ) |
| 177 |
176
|
anassrs |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑤 ∈ ℕ ∧ ∀ 𝑔 ∈ ( 𝑅 ↑m ( 1 ... 𝑤 ) ) ( 〈 𝑚 , 𝐾 〉 PolyAP 𝑔 ∨ ( 𝐾 + 1 ) MonoAP 𝑔 ) ) ) ∧ ( 𝑣 ∈ ℕ ∧ ∀ 𝑓 ∈ ( ( 𝑅 ↑m ( 1 ... 𝑤 ) ) ↑m ( 1 ... 𝑣 ) ) 𝐾 MonoAP 𝑓 ) ) → ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 𝑛 ) ) ( 〈 ( 𝑚 + 1 ) , 𝐾 〉 PolyAP 𝑓 ∨ ( 𝐾 + 1 ) MonoAP 𝑓 ) ) |
| 178 |
127 177
|
rexlimddv |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑤 ∈ ℕ ∧ ∀ 𝑔 ∈ ( 𝑅 ↑m ( 1 ... 𝑤 ) ) ( 〈 𝑚 , 𝐾 〉 PolyAP 𝑔 ∨ ( 𝐾 + 1 ) MonoAP 𝑔 ) ) ) → ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 𝑛 ) ) ( 〈 ( 𝑚 + 1 ) , 𝐾 〉 PolyAP 𝑓 ∨ ( 𝐾 + 1 ) MonoAP 𝑓 ) ) |
| 179 |
178
|
rexlimdvaa |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ∃ 𝑤 ∈ ℕ ∀ 𝑔 ∈ ( 𝑅 ↑m ( 1 ... 𝑤 ) ) ( 〈 𝑚 , 𝐾 〉 PolyAP 𝑔 ∨ ( 𝐾 + 1 ) MonoAP 𝑔 ) → ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 𝑛 ) ) ( 〈 ( 𝑚 + 1 ) , 𝐾 〉 PolyAP 𝑓 ∨ ( 𝐾 + 1 ) MonoAP 𝑓 ) ) ) |
| 180 |
113 179
|
biimtrid |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 𝑛 ) ) ( 〈 𝑚 , 𝐾 〉 PolyAP 𝑓 ∨ ( 𝐾 + 1 ) MonoAP 𝑓 ) → ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 𝑛 ) ) ( 〈 ( 𝑚 + 1 ) , 𝐾 〉 PolyAP 𝑓 ∨ ( 𝐾 + 1 ) MonoAP 𝑓 ) ) ) |
| 181 |
180
|
expcom |
⊢ ( 𝑚 ∈ ℕ → ( 𝜑 → ( ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 𝑛 ) ) ( 〈 𝑚 , 𝐾 〉 PolyAP 𝑓 ∨ ( 𝐾 + 1 ) MonoAP 𝑓 ) → ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 𝑛 ) ) ( 〈 ( 𝑚 + 1 ) , 𝐾 〉 PolyAP 𝑓 ∨ ( 𝐾 + 1 ) MonoAP 𝑓 ) ) ) ) |
| 182 |
181
|
a2d |
⊢ ( 𝑚 ∈ ℕ → ( ( 𝜑 → ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 𝑛 ) ) ( 〈 𝑚 , 𝐾 〉 PolyAP 𝑓 ∨ ( 𝐾 + 1 ) MonoAP 𝑓 ) ) → ( 𝜑 → ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 𝑛 ) ) ( 〈 ( 𝑚 + 1 ) , 𝐾 〉 PolyAP 𝑓 ∨ ( 𝐾 + 1 ) MonoAP 𝑓 ) ) ) ) |
| 183 |
9 14 19 24 106 182
|
nnind |
⊢ ( 𝑀 ∈ ℕ → ( 𝜑 → ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 𝑛 ) ) ( 〈 𝑀 , 𝐾 〉 PolyAP 𝑓 ∨ ( 𝐾 + 1 ) MonoAP 𝑓 ) ) ) |
| 184 |
4 183
|
mpcom |
⊢ ( 𝜑 → ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑅 ↑m ( 1 ... 𝑛 ) ) ( 〈 𝑀 , 𝐾 〉 PolyAP 𝑓 ∨ ( 𝐾 + 1 ) MonoAP 𝑓 ) ) |